精英家教网 > 高中数学 > 题目详情
2.已知△ABC的内角A,B,C对的边分别为a,b,c,且sinA+$\sqrt{2}$sinB=2sinC,则cosC的最小值等于(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{4}$

分析 已知等式利用正弦定理化简,得到关系式,利用余弦定理表示出cosC,把得出关系式整理后代入,利用基本不等式求出cosC的最小值即可.

解答 解:已知等式利用正弦定理化简得:a+$\sqrt{2}$b=2c,
两边平方得:(a+$\sqrt{2}$b)2=4c2,即a2+2$\sqrt{2}$ab+2b2=4c2
∴4a2+4b2-4c2=3a2+2b2-2$\sqrt{2}$ab,即a2+b2-c2=$\frac{3{a}^{2}+2{b}^{2}-2\sqrt{2}ab}{4}$,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{8}$($\frac{3a}{b}$+$\frac{2b}{a}$-2$\sqrt{2}$)≥$\frac{\sqrt{6}-\sqrt{2}}{4}$(当且仅当$\frac{3a}{b}$=$\frac{2b}{a}$,即$\sqrt{3}$a=$\sqrt{2}$b时取等号),
则cosC的最小值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.
故选:A.

点评 此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知实数a<-1,函数f(x)=$\left\{\begin{array}{l}{(-2{x}^{3}+3a{x}^{2}+6ax-4{a}^{2}-6a)•{e}^{x},x≤1}\\{[(6a-1)lnx+x+\frac{a}{x}+15a]•e,x>1}\end{array}\right.$,若?x1,x2∈[a,-a](x1≠x2),[f(x1)-f(x2)](x1-x2)<0,则实数a的最大值为(  )
A.-3B.-2C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知点O是△ABC的外心,H为垂心,BD为外接圆直径.求证:
(1)$\overrightarrow{AH}$=$\overrightarrow{DC}$;
(2)$\overrightarrow{OH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某中学为研究某位学生物理成绩与数学成绩的相关性,抽取该同学高二的5次月考数学成绩和相应的物理成绩如下表:
数学成绩xi90100115130
物理成绩yi6065707580
由这些样本数据算得变量x与y满足线性回归方程$\widehat{y}$=0.47x+17.36,但由于某种原因该表中一次数学成绩被污损,则根据回归方程和表中数据可得污损的数学成绩为(  )
A.120B.122.64C.125D.127

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数a,b,则“log2a>log2b”是“2a>2b”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$f(x)=({m-1}){x^{{m^2}-4m+3}}$是幂函数,则(  )
A.f(x)在定义域上单调递减B.f(x)在定义域上单调递增
C.f(x)是奇函数D.f(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知随机变量X的分布列如图所示,则E(6X+8)=21.2.
X123
P0.20.40.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,角A,B,C的对边分别为a,b,c.若2asinB=$\sqrt{3}$b.
(1)求角A的大小;
(2)若b=3,△ABC的面积为3$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足$\left\{\begin{array}{l}x-2y+4≥0\\ 2x+y-2≥0\\ 3x-y-3≤0\end{array}\right.$,则x2+y2的取值范围是(  )
A.[$\frac{4}{5}$,13]B.[$\frac{{2\sqrt{5}}}{5}$,$\sqrt{13}$]C.[0,4]D.[1,$\sqrt{13}$]

查看答案和解析>>

同步练习册答案