精英家教网 > 高中数学 > 题目详情
直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,.求三棱锥A1-AB1C的体积   
【答案】分析:先求底面边长AB,再求底面面积,然后求体积.
解答:解:直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,
所以AB=底面是等腰直角三角形,
底面面积是,棱柱的高是 1
三棱锥A1-AB1C的体积:
故答案为:
点评:本题考查棱柱的体积求法,考查学生的空间想象能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求证:平面AB1C⊥平面B1CB;    
(2)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角.
(1)求证:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距离;   
(3)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆八中高三(下)第二次月考数学试卷(理科)(解析版) 题型:选择题

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案