【题目】记f(n)为最接近 (n∈N*)的整数,如f(1)=1,f(2)=1,f(3)=2,f(4)=2,f(5)=2,…,若 + + +…+ =4054,则正整数m的值为( )
A.2016×2017
B.20172
C.2017×2018
D.2018×2019
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,曲线C1的参数方程为 (t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4 sinθ. (Ⅰ)将C2的方程化为直角坐标方程;
(Ⅱ)设C1 , C2交于A,B两点,点P的坐标为 ,求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P( , )在椭圆E: + =1(a>b>0)上,F为右焦点,PF垂直于x轴,A,B,C,D为椭圆上四个动点,且AC,BD交于原点O.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A(x1 , y1),B(x2 , y2),满足 = ,判断kAB+kBC的值是否为定值,若是,求出此定值,并求出四边形ABCD面积的最大值,否则请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(ω>0, )的部分图象如图所示,将函数f(x)的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间 ( )上的值域为[﹣1,2],则θ= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆E: + =1(a>0)的焦点在x轴上.
(Ⅰ)若椭圆E的离心率e= a,求椭圆E的方程;
(Ⅱ)设F1、F2分别是椭圆E的左、右焦点,P为直线x+y=2 与椭圆E的一个公共点,直线F2P交y轴于点Q,连结F1P,问当a变化时, 与 的夹角是否为定值,若是定值,求出该定值,若不是定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若 ,则实数m的取值范围是( )
A.(﹣∞,1]
B.
C.[1,+∞)
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,满足 .
(1)求∠ABC;
(2)若 ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知图1中,四边形 ABCD是等腰梯形,AB∥CD,EF∥CD,DM⊥AB于M、交EF于点N,DN=3 ,MN= ,现将梯形ABCD沿EF折起,记折起后C、D为C'、D'且使D'M=2 ,如图2示.
(Ⅰ)证明:D'M⊥平面ABFE;,
(Ⅱ)若图1中,∠A=60°,求点M到平面AED'的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com