精英家教网 > 高中数学 > 题目详情
函数f(x)=
13
x3
+ax+4有极大值又有极小值,则a的取值范围是
(-∞,0)
(-∞,0)
分析:先对函数进行求导,根据函数既有极大值又有极小值,可以得到△>0,从而可解出a的范围.
解答:解:∵f(x)=
1
3
x3
+ax+4,∴f'(x)=x2+a,
∵函数f(x)=
1
3
x3
+ax+4既有极大值又有极小值,
∴方程x2+a=0有两个不相等的实根,
∴△=02-4a>0
解得a<0.
故答案为:(-∞,0).
点评:本题主要考查函数在某点取得极值的条件.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x-lnx(x>0),则y=f(x)(  )
A、在区间(
1
e
,1),(l,e)内均有零点
B、在区间(
1
e
,1),(l,e)内均无零点
C、在区间(
1
e
,1)内无零点,在区间(l,e)内有零点
D、在区间(
1
e
,1)内有零点,在区间(l,e)内无零点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3x+
3

(1)f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值;
(2)归纳猜想一般性的结论,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x-lnx,则y=f(x)
 
.(填写正确命题的序号)
①在区间(
1
e
,1),(1,e)内均有零点; ②在区间(
1
e
,1)内有零点,在区间(1,e)内无零点;
③在区间(
1
e
,1),(1,e)内均无零点; ④在区间(
1
e
,1)内无零点,在区间(1,e)内有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x       (x<1)
(x-5)2-3  (x≥1)
,则f(3-
1
2
)-f(5+3-
3
4
 
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
13x-1
+a (x≠0),则“f(1)=1”是“函数f(x)为奇函数”的
 
条件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填写)

查看答案和解析>>

同步练习册答案