精英家教网 > 高中数学 > 题目详情
15.已知数列$\left\{{\frac{a_n}{{{p^{n-1}}}}}\right\}$的前n项和Sn=n2+2n(其中常数p>0).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{an}的前n项和.
(i)求Tn的表达式;
(ii)若对任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范围.

分析 (Ⅰ)当n≥2时,利用$\frac{a_n}{{{p^{n-1}}}}$=Sn-Sn-1,进而计算可得结论;
(Ⅱ)(i)当p=1时直接利用等差数列的求和公式计算即可;当p≠1时利用错位相减法计算即得结论;
(ii)分p=1与p≠1两种情况讨论,其中当p≠1时问题转化为对任意n∈N*都有$\frac{3-p}{1-p}$≥$\frac{4-2p}{1-p}$pn恒成立,再分0<p<1、1<p<2、p≥2三种情况讨论即可.

解答 解:(Ⅰ)依题意,当n=1时,a1=S1=3;(1分)
当n≥2时,$\frac{a_n}{{{p^{n-1}}}}$=Sn-Sn-1=2n+1,得an=(2n+1)pn-1.(2分)
又因为n=1也满足上式,
所以an=(2n+1)pn-1(3分)
(Ⅱ)(i)Tn=3+5p+7p2+…+(2n+1)pn-1
①当p=1时,Tn=n2+2n;(4分)
②当p≠1时,由Tn=3+5p+7p2+…+(2n+1)pn-1
pTn=3p+5p2+7p3+…+(2n-1)pn-1+(2n+1)pn
则(1-p)Tn=3+2(p+p2+p3+…+pn-1)-(2n+1)pn
得Tn=$\frac{3}{1-p}$+$\frac{2p(1-{p}^{n-1})}{(1-p)^{2}}$-$\frac{1}{1-p}$(2n+1)pn.(6分)
综上,当p=1时,Tn=n2+2n;
当p≠1时,Tn=$\frac{3}{1-p}$+$\frac{2p(1-{p}^{n-1})}{(1-p)^{2}}$-$\frac{1}{1-p}$(2n+1)pn.(7分)
(ii)①当p=1时,显然对任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立;   (8分)
②当p≠1时,可转化为对任意n∈N*,都有3+$\frac{2p(1-{p}^{n-1})}{1-p}$≥2pn恒成立.
即对任意n∈N*,都有$\frac{3-p}{1-p}$≥$\frac{4-2p}{1-p}$pn恒成立.
当0<p<1时,只要$\frac{3-p}{4-2p}$≥p成立,解得0<p<1;(9分)
当1<p<2时,只要$\frac{3-p}{4-2p}$≤pn 对任意n∈N*恒成立,
只要有$\frac{3-p}{4-2p}$≤pn对任意n∈N*恒成立,
只要有$\frac{3-p}{4-2p}$≤p成立,解得1<p≤$\frac{3}{2}$(10分)
当p≥2时,不满足.(11分)
综上,实数p的取值范围为(0,$\frac{3}{2}$].(12分)

点评 本题是一道关于数列与不等式的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.下列命题中正确的是②(写出所有正确命题的序号)
①存在α满足sinα+cosα=2;
②y=cos($\frac{9π}{2}-3x$)是奇函数;
③若α,β是第一象限角且α<β,则tanα<tanβ;
④y=3cos(2x+$\frac{5π}{4}$)图象的一条对称轴是x=-$\frac{9π}{8}$;
⑤y=sin(2x-$\frac{π}{4}$)的图象可由y=sin2x的图象向右平移$\frac{π}{4}$个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义在R上的函数f(x)是奇函数,且满足f(x)=f(x+3),f(-2)=-3,数列{an}中,an=f(n)(n∈N*),则a6+a7=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有两个分类变量X与Y,其一组观测值的2×2列联表如下表,其中a,10-a均为大于1的整数,若K2观测值k>2,则a的取值为(  )
 Y1Y2
X15+a15-a
Y110-a20-a
A.6或7B.7C.8D.7或8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有四个游戏盘,将它们水平放稳后,在上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,要想中奖机会最大,应选择的游戏盘是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设不等的两个整数a,b满足a3-b3=a2-b2,则a+b的取值范围是$(1{,^{\;}}\frac{4}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设集合M={-1,0,1},N={a,a2},则使N?M成立的a的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算$\frac{\sqrt{2}sin(-1200°)}{tan\frac{7}{4}π}$-cos585°tan(-$\frac{37}{6}π$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tanα=4$\sqrt{3}$,cos(α+β)=-$\frac{11}{14}$,α,β均为锐角,则β的值是(  )
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案