精英家教网 > 高中数学 > 题目详情
8.已知边长为6的正方形ABCD所在平面外一点P,且PD⊥平面ABCD,PD=8
(Ⅰ)连接PB、AC,证明:PB⊥AC;
(Ⅱ)连接PA,求PA与平面PBD所成的角的正弦值.

分析 (Ⅰ)欲证PB⊥AC,只需证明AC垂直PB所在平面即可,因为PB在平面PBD中,AC垂直平面PBD中的两条相交直线PD和BD,所以问题得证.
(Ⅱ)欲求PA与平面PBD所成的角的大小,只需找到PA在平面PBD中的射影,PA与它的射影所成角即为所求,再放入三角形中,解三角形即可.

解答 (Ⅰ)证明:连接BD,在正方形ABCD中,AC⊥BD,
又PD⊥平面ABCD,所以,PD⊥AC,
所以AC⊥平面PBD,故PB⊥AC.
(Ⅱ)解:因为AC⊥平面PBD,设AC与BD交于O,连接PO,则∠APO就是PA与平面PBD所成的角,
在△APO中,AO=3$\sqrt{2}$,AP=10,
所以sin∠APO=$\frac{3\sqrt{2}}{10}$,
所以∠APO=arcsin$\frac{3\sqrt{2}}{10}$,
所以PA与平面PBD所成的角的大小为arcsin$\frac{3\sqrt{2}}{10}$.

点评 本题主要考查了直线与直线垂直的证明,直线与平面所成角的计算,以及点到平面的距离的求法,属于立体几何的常规题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.将分别写有A,B,C,D,E,F的6张卡片装入3个不同的信封里中.若每个信封装2张,其中写有A,B的卡片装入同一信封,则不同的方法共有(  )
A.12种B.18种C.36种D.54种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=loga(x-1)+a(a>0,a≠1)的图象经过点(2,3).求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{asin2x,0≤x≤π}\end{array}\right.$.若方程f(x)=1有3个不同的实数根,则实数a的取值范围是(  )
A.(1,+∞)B.{-1}∪(1,+∞)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l∥平面α,l的一个方向向量为(t,2,4),α的法向量为($\frac{1}{2}$,1,2),则实数t的值为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=-x3+2x2-x(x∈R).
(1)求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.观察下列各式:

照此规律,当n∈N*时,C2n-10+C2n-11+C2n-12+…+C2n-1n-1=(  )
A.4n+1B.4nC.4n-1D.4n-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知${(\sqrt{x}+\frac{2}{x^2})^n}$的展开式中,
(1)若第5项的系数与第3项的系数之比是56﹕3,求展开式中的常数项;
(2)求证:二项式${(\sqrt{x}+\frac{2}{x^2})^n}$与${(\sqrt{x}+\frac{2}{x^2})^{n+1}}$的展开式中不可能都有常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的前n项和Sn=n2-2n,则 a2+a10=(  )
A.20B.19C.18D.17

查看答案和解析>>

同步练习册答案