精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=-x2+2mx+7.

(Ⅰ)已知函数y=(x)在区间[1,3]上的最小值为4,求m的值;

(Ⅱ)若不等式fx)≤x2-6x+11在区间[1,2]上恒成立,求实数m的取值范围.

【答案】(Ⅰ)m=1(Ⅱ)m≤2-3

【解析】

(Ⅰ)利用函数的性质可求得最值

(Ⅱ)利用函数的最值可解决此问题

)函数对称轴x=m且抛物线开口向下.

m≤2时,ymin=-32+6m+7=4∴m=1;

m≥2时,ymin=-12+2m+7=4∴m=-1(舍);

m=1;

(Ⅱ)∵不等式fx)≤x2-6x+11在区间[1,2]上恒成立

∴-x2+2mx+7≤x2-6x+11在区间[1,2]上恒成立

mx-3+

m≤(x+-3)min

g(x)=x+-3,易知

m≤2-3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,倾斜角为α的直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sin θ=0.

(1)写出直线l的普通方程和曲线C的直角坐标方程;

(2)已知点P(1,0).若点M的极坐标为,直线l经过点M且与曲线C相交于AB两点,设线段AB的中点为Q,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非零向量满足(2-)⊥,集合A={x|x2+(||+||)x+||||=0}中有且仅有唯一一个元素.

(1)求向量的夹角θ;

(2)若关于t的不等式|-t|<|-m|的解集为空集,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.对于的一个子集,若存在不大于的正整数,使得对于中的任意一对元素,都有,则称具有性质.

(Ⅰ)当时,试判断集合是否具有性质?并说明理由.

(Ⅱ)若时,

①若集合具有性质,那么集合是否一定具有性质?并说明理由;

②若集合具有性质,求集合中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若f(x)在[1,e]上的最小值为 ,求a的值;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f)≤2f(1),则a的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)=ax2+bx,(ab为常数,且a≠0)满足条件f(2-x)=fx-1),且方程fx)=x有两个相等的实根.

(1)求fx)的解析式;

(2)设gx)=kx+1,若Fx)=gx)-fx),求Fx)在[1,2]上的最小值;

(3)是否存在实数mnmn),使fx)的定义域和值域分别为[mn][2m,2n],若存在,求出mn的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)从区间内任意选取一个实数,求的概率;

(2)从区间内任意选取一个整数,求的概率

【答案】(1) .(2) .

【解析】试题(1)根据几何概型概率公式,分别求出满足不等式的的区间长度与区间总长度,求比值即可;(2) 区间内共有个数,满足的整数为共有 个,根据古典概型概率公式可得结果.

试题解析: (1)

故由几何概型可知,所求概率为.

(2)

则在区间内满足的整数为56789共有5

故由古典概型可知,所求概率为.

【方法点睛】本题題主要考查古典概型及“区间型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,区间型求与区间有关的几何概型问题关鍵是计算问题题的总区间 以及事件的区间几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.

型】解答
束】
18

【题目】已知函数f(x)=ax(a>0且a≠1)的图象过的(-2,16).

(1)求函数f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , a1= ,公比q>0,S1+a1 , S3+a3 , S2+a2成等差数列.
(1)求an
(2)设bn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案