精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值;
(2)求f(2)的取值范围.

解:(1)∵f(x)=-x3+ax2+bx+c
∴f'(x)=-3x2+2ax+b.
∵f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,
∴当x=0时,f(x)取到极小值,即f'(0)=0
∴b=0.
(2)由(1)知,f(x)=-x3+ax2+c
∵1是函数f(x)的一个零点,即f(1)=0,
∴c=1-a
∵f'(x)=-3x2+2ax=0的两个根分别为
又∵f(x)在(0,1)上是增函数,且函数f(x)在R上有三个零点,
,即


分析:(1)求出导函数,据已知条件中函数的单调性,判断出x=0是一个极值点,将x=0代入导函数得到函数值为0,求出b的值.
(2)将b的值代入f(x)中,将x=1代入得到a,c的关系,求出导函数的两个根即函数的两个极值点,利用函数的单调性,判断出极值点与单调区间的关系,列出不等式求出f(2)的范围.
点评:函数在极值点处的导函数为0是函数有极值的必要条件;极值点左右两边的导函数符号还必须相反.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案