精英家教网 > 高中数学 > 题目详情

已知不等式,若对任意,该不等式恒成立,则实数的取值范围是           .

 

【答案】

【解析】不等式,可转化为,令,该不等式恒成立,只需时,

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
ex+1

(Ⅰ)证明函数y=f(x)的图象关于点(0,
1
2
)对称;
(Ⅱ)设y=f-1(x)为y=f(x)的反函数,令g(x)=f-1(
x+1
x+2
),是否存在实数b
,使得任给a∈[
1
4
1
3
],对任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=2,任取a、b∈[-1,1],a+b≠0,都有
f(a)+f(b)
a+b
>0成立
(1)判断f(x)的单调性,并说明理由;     
(2)解不等式f(x)<f(
1
x+1
)

(3)若f(x)≤2m2-2am+3对所有的m∈[0,3]恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源:山东省梁山一中2010-2011学年高二下学期期末考试数学理科试题 题型:013

已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图像关于点(1,0)对称,若对任的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是

[  ]
A.

(3,7)

B.

(9,25)

C.

(13,49)

D.

(9,49)

查看答案和解析>>

科目:高中数学 来源:2012届山东省高二下学期期末考试理科数学 题型:选择题

已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图像关于点(1,0)对称,若对任的x,y∈R,不等式f(-6x+21)+f(-8y)<0恒成立,则当x>3时,的取值范围是(   )    

A  (3,7)    B (9,25)    C (13,49)    D (9,49)

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省景德镇市昌江一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=2,任取a、b∈[-1,1],a+b≠0,都有>0成立
(1)判断f(x)的单调性,并说明理由;     
(2)解不等式f(x)<
(3)若f(x)≤2m2-2am+3对所有的m∈[0,3]恒成立,求a的范围.

查看答案和解析>>

同步练习册答案