精英家教网 > 高中数学 > 题目详情
椭圆T的中心为坐标原点O,右焦点为F(2,0),且椭圆T过点E(2,
2
).△ABC的三个顶点都在椭圆T上,设三条边的中点分别为M,N,P.
(1)求椭圆T的方程;
(2)设△ABC的三条边所在直线的斜率分别为k1,k2,k3,且ki≠0,i=1,2,3.若直线OM,ON,OP的斜率之和为0,求证:
1
k1
+
1
k2
+
1
k3
为定值.
(1)设椭圆T的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
由题意知:左焦点为F′(-2,0),所以2a=|EF|+|EF′|=
2
+3
2

解得a=2
2

∵c=2,∴b=
a2-c2
=2.
故椭圆T的方程为
x2
8
+
y2
4
=1
…(4分)
(2)设A(x1,y1),B(x2,y2),C(x3,y3),M(s1,t1),N(s2,t2),P(s3,t3),
由:x12+2y12=8x22+2y22=8,两式相减,得到
(x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0
所以k1=
y1-y2
x1-x2
=-
1
2
x1+x2
y1+y2
=-
s1
2t1
,即
1
k1
=-
2t1
s1
,…(9分)
同理
1
k2
=-
2t2
s2
1
k3
=-
2t3
s3

所以
1
k1
+
1
k2
+
1
k3
=-2(
t1
s1
+
t2
s2
+
t3
s3
)

又因为直线OM,ON,OP的斜率之和为0,
所以
1
k1
+
1
k2
+
1
k3
=0 …(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•杨浦区一模)椭圆T的中心为坐标原点O,右焦点为F(2,0),且椭圆T过点E(2,
2
).△ABC的三个顶点都在椭圆T上,设三条边的中点分别为M,N,P.
(1)求椭圆T的方程;
(2)设△ABC的三条边所在直线的斜率分别为k1,k2,k3,且ki≠0,i=1,2,3.若直线OM,ON,OP的斜率之和为0,求证:
1
k1
+
1
k2
+
1
k3
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆T的中心为坐标原点O,右焦点为F(2,0),且椭圆T过点E(2,数学公式).△ABC的三个顶点都在椭圆T上,设三条边的中点分别为M,N,P.
(1)求椭圆T的方程;
(2)设△ABC的三条边所在直线的斜率分别为k1,k2,k3,且ki≠0,i=1,2,3.若直线OM,ON,OP的斜率之和为0,求证:数学公式为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市东城区示范校高三(上)12月联考数学试卷(理科)(解析版) 题型:解答题

椭圆T的中心为坐标原点O,右焦点为F(2,0),且椭圆T过点E(2,).△ABC的三个顶点都在椭圆T上,设三条边的中点分别为M,N,P.
(1)求椭圆T的方程;
(2)设△ABC的三条边所在直线的斜率分别为k1,k2,k3,且ki≠0,i=1,2,3.若直线OM,ON,OP的斜率之和为0,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市汶上一中高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

椭圆T的中心为坐标原点O,右焦点为F(2,0),且椭圆T过点E(2,).△ABC的三个顶点都在椭圆T上,设三条边的中点分别为M,N,P.
(1)求椭圆T的方程;
(2)设△ABC的三条边所在直线的斜率分别为k1,k2,k3,且ki≠0,i=1,2,3.若直线OM,ON,OP的斜率之和为0,求证:为定值.

查看答案和解析>>

同步练习册答案