精英家教网 > 高中数学 > 题目详情
若直线斜率k=
14
,和坐标轴围成面积为2的三角形,则这直线的方程为
 
.(用一般式写出,纵截距大的在前)
分析:根据直线的斜率设出直线方程,然后根据直线和坐标轴围成的三角形面积为2列出关于b的方程,解得b的值即可得到直线方程.
解答:解:设直线方程为y=
1
4
x+b,
令x=0,得到y=b;
令y=0得到x=-4b.
由直线和坐标轴围成面积为2得到
1
2
|4b2|=2,解得b=1或b=-1
所以直线方程为y=
1
4
x+1,y=
1
4
x-1即x-4y+4=0,x-4y-4=0.
故答案为:x-4y+4=0,x-4y-4=0
点评:考查学生会根据斜率和截距写出直线的斜截式方程,做题时注意题中的“用一般式写出,纵截距大的在前”的要求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若
1
3
<k<
1
2
,则椭圆离心率的取值范围是(  )
A、(
1
4
9
4
)
B、(
2
3
,1)
C、(
1
2
2
3
)
D、(0,
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+1)2+(y-2)2=4
(1)若直线l:y=k(x-2)与圆C有公共点,求直线l的斜率k的取值范围;
(2)(文科)若过(2,0)的直线m被圆C截得的弦长为
14
,求直线m的方程;
(2)(理科)若斜率为1的直线m被圆C截得的弦AB满足OA⊥OB(O是坐标原点),求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)(I)已知函数f(x)=x-
1
x
,x∈(
1
4
1
2
),P(x1,f(x1)),Q(x2,f(x2))是f(x)
图象上的任意两点,且x1<x2
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
f(b)-f(a)
b-a
f(b)-f(a)
b-a
成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以动点P为圆心的圆与直线y=-
1
20
相切,且与圆x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求动P的轨迹C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.
    (1)求直线L斜率k的取值范围;
    (2)设椭圆E的方程为
x2
2
+
y2
a
=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若
OR
OS
=0,求E离心率的范围.

查看答案和解析>>

同步练习册答案