精英家教网 > 高中数学 > 题目详情
19.已知α 是第三象限角,$cosα=-\frac{12}{13}$,则tanα=$\frac{5}{12}$.

分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,先求得 sinα,进而求得tanα的值.

解答 解:∵α 是第三象限角,$cosα=-\frac{12}{13}$,∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{5}{13}$,
则tanα=$\frac{sinα}{cosα}$=$\frac{5}{12}$,
故答案为:$\frac{5}{12}$.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知直线l过定点(0,1),则“直线l与圆(x-2)2+y2=4相切”是“直线l的斜率为$\frac{3}{4}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各角中是第二象限角的个数为(  )
(1)125°(2)195°(3)-200°(4)179°.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x>0,都有logax<0(a>0且a≠1),命题q:?x∈Q,都有x∈R,则下列命题中为真命题的是(  )
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数 f(x)=$\frac{1}{{\sqrt{2-x}}}$+lg(1+x)的定义域是{x|-1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知方程$\frac{x^2}{m}+\frac{y^2}{m-4}=1$表示焦点在x轴上的双曲线,则m的取值范围是(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若椭圆的焦距与短轴长相等,则此椭圆的离心率为(  )
A.$\frac{1}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示y=sin(ωx+φ)的图象可以由y=sinωx的图象沿x轴经怎样的平移得到的(  )
A.沿x轴向左平移$\frac{π}{6}$个单位B.沿x轴向左平移$\frac{π}{3}$个单位
C.沿x轴向右平移$\frac{π}{6}$个单位D.沿x轴向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n∈N*),
(1)求使anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;
(2)求数列{bn}的前n项和Sn
(3)试证明:当q≥2时,对任意正整数n≥2,Sn不可能是数列{bn}中的某一项.

查看答案和解析>>

同步练习册答案