精英家教网 > 高中数学 > 题目详情
设集合A={x|y=log2(x-2)},B={x|x2-5x+4<0},则A∪B=
(1,+∞)
(1,+∞)
分析:求出集合A,集合B,然后求解它们的并集即可.
解答:解:因为集合A={x|y=log2(x-2)}={x|x>2},
集合B={x|x2-5x+4<0}={x|1<x<4},
所以A∪B={x|x>1}.
故答案为:(1,+∞).
点评:本题考查集合的求法并集的基本运算,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、设集合A={x|y=x2-1},B={y|y=x2-1},C={(x,y)|y=x2-1},则正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

1、设集合A={x|y=log(x-3)},B={x|x2-5x+4<0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=x+1,x∈R},B={y|y=x2+1,x∈R},则A∩B=
[1,+∞)
[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=
16-x2
,x∈N},B={y|y=
9-3x
}
,则A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=
x+1
}
,集合B={y|y=x2,x∈R},则A∩B=(  )

查看答案和解析>>

同步练习册答案