精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
两县城A和B相聚20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对称A和城B的总影响度为0.0065.(1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离,若不存在,说明理由。
(1)(2)在弧AB上存在一点,且此点到城市A的距离为
(1)如右图,由题意知AC⊥BC,,
当垃圾处理厂建在弧AB的中点时,垃圾处理厂到A、B的距离都相等,且为
,所以有,解得

(2)∵==
,得,解得,即
又因为,所以函数上是减函数,
上是增函数,∴当时,y取得最小值,
所以在弧AB上存在一点,且此点到城市A的距离为,使建在此处的垃圾处理厂对城市A、B的总影响度最小.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=, 当x∈[-4, 0]时, 恒有f(x)≤g(x), 则a可能取的一个值是  (      )                                                                        
A. -5B. 5C.-D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数。当时,函数的取值范围恰为
(1)求函数的解析式;(2)若向量,解关于的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)某地一水库年初有水量a(a≥10000),其中含污染物的量为p0(设水与污染物混合均匀),已知该地降水量与月份的关系为而每月流入水库的污水量与蒸发的水量都是r,且此污水中含污染物的量为p(p<r),设当年水库中的水不作它用.
(Ⅰ)求第x月水库中水的含污比g(x)的表达式(含污比=);
(Ⅱ)当p0­=0时,求水质量差的月份及此月的含污比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为,则他对这两种交易的综合满意度为.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为
(1)求关于的表达式;当时,求证:=
(2)设,当分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为,试问能否适当选取的值,使得同时成立,但等号不同时成立?试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,这样不同的f有多少个?
(2)若B中的元素0必无原象,这样的f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=f(x)的图象是两条直线的一部分(如图所示),其定义域为[-1,0)∪(0,1],则不等式f(x)-f(-x)>-1的解集为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知(x,y)在映射f的作用下的像是(x+y,xy),求(-3,5)在f作用下的像和(3,-4)在f作用下的原像.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域为__________.

查看答案和解析>>

同步练习册答案