精英家教网 > 高中数学 > 题目详情
已知函数               

试题分析:,所以
点评:在分段函数中,不管是求出函数值,还是求出自变量,需分清自变量的范围。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设[x]表示不大于x的最大整数, 则对任意实数x, y, 有 (    )
A.[-x] = -[x]B.[2x] = 2[x]
C.[x+y]≤[x]+[y]D.[x-y]≤[x]-[y]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=(x+a)(bx+2a)(a、b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(m为常数0<m<1),且数列{f()}是首项为2,公差为2的等差数列.
(1)f(),当m=时,求数列{}的前n项和
(2)设·,如果{}中的每一项恒小于它后面的项,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

探究函数f(x)=x+,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57

请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+(x>0)在区间(0,2)上递减;
(1)函数f(x)=x+(x>0)在区间                  上递增.
当x=                 时,y最小=                         .
(2)证明:函数f(x)=x+在区间(0,2)上递减.
(3)思考:函数f(x)=x+(x<0)有最值吗?如果有,那么它是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列各组函数中,表示同一函数的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若f(x)是偶函数,g(x)是奇函数,且,求f(x)和g(x)的解析式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=log)为奇函数,a为常数.
(Ⅰ)求a的值;
(Ⅱ)证明f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个的值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2-x(x∈R,a、b是常数,a≠0),且当x=1和x=2时,函数f(x)取得极值.(I)求函数f(x)的解析式;
(Ⅱ)若曲线y=f(x)与g(x)=有两个不同的交点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案