精英家教网 > 高中数学 > 题目详情

(理)已知函数f(x)=2x+1,x∈R.规定:给定一个实数x0,赋值x1=f(x0),若x1≤255,则继续赋值x2=f(x1) …,以此类推,若xn-1≤255,则xn=f(xn-1),否则停止赋值,如果得到xn后停止,则称赋值了n次(n∈N*).已知赋值k次后该过程停止,则x0的取值范围是


  1. A.
    (2k-9,2k-8]
  2. B.
    (2k-8-1,2k-9-1]
  3. C.
    (28-k-1,29-k-1]
  4. D.
    (27-k-1,28-k-1]
C
分析:由已知中给定一个实数x0,赋值x1=f(x1),若x1≤255,则继续赋值x2=f(x1) …,以此类推,若xn-1≤255,则xn=f(xn-1),否则停止赋值,如果得到xn后停止,已知赋值k次后该过程停止,我们易得x0的满足xk=2kx0+2k-1+…+1≤255,xk+1=2k+1x0+2k+…+1>255,解不等式组即可得到答案.
解答:x1=f(x0)=2x0+1,
x2=22x0+2+1

xk=2kx0+2k-1+…+1
xk+1=2k+1x0+2k+…+1
若赋值k次后该过程停止,则x0满足
xk=2kx0+2k-1+…+1≤255
xk+1=2k+1x0+2k+…+1>255
解得X0∈(28-k-1,29-k-1](k∈N*).
故选C
点评:本题考查的知识点是推理与证明,其中根据已知条件中的定义,得到x0的满足的不等式组,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理) 已知函数f(x)=x-ln(x+a)在x=1处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x)+2x=x2+b在[
12
,2]
上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的对称轴方程与单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=sinx+ln(1+x).
(I)求证:
1
n
<f(
1
n
)<
2
n
(n∈N+);
(II)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在区间(0,1)上为单调函数,求实数a的取值范围.
(III)讨论函数h(x)=ln(1+x2)-
12
f(x)-k的零点个数?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(理)已知函数f(x)=2x+1,x∈R.规定:给定一个实数x0,赋值x1=f(x0),若x1≤255,则继续赋值x2=f(x1) …,以此类推,若xn-1≤255,则xn=f(xn-1),否则停止赋值,如果得到xn后停止,则称赋值了n次(n∈N*).已知赋值k次后该过程停止,则x0的取值范围是(  )

查看答案和解析>>

同步练习册答案