分析 (1)利用二倍角公式及变形、两角差的正弦公式化简解析式,由题意和三角函数的周期公式求出ω,由特殊角的正弦值求出f($\frac{π}{4}$)的值;
(2)利用诱导公式、二倍角余弦公式变形化简已知的方程,求出cosB的值,由内角的范围和特殊角的三角函数值求出B,由内角和定理求出A的范围,由正弦函数的图象与 性质求出f(A)的取值范围.
解答 解:(1)由题意得,f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx=$\frac{\sqrt{3}}{2}sin2ωx-\frac{1+cos2ωx}{2}$=$sin(2ωx-\frac{π}{6})-\frac{1}{2}$,
∵f(x)的最小正周期为π,∴$\frac{2π}{2ω}=π$,则ω=1,
即f(x)=$sin(2x-\frac{π}{6})-\frac{1}{2}$,
∴f($\frac{π}{4}$)=$sin(2×\frac{π}{4}-\frac{π}{6})-\frac{1}{2}$=$\frac{\sqrt{3}-1}{2}$;
(2)由A+B+C=π得,$\frac{A+C}{2}$=$\frac{π}{2}-\frac{B}{2}$,
∴4sin2$\frac{A+C}{2}$-cos2B=$\frac{7}{2}$为4sin2($\frac{π}{2}-\frac{B}{2}$)-cos2B=$\frac{7}{2}$,
则2[1-cos(π-B)]-(2cos2B-1)=$\frac{7}{2}$,
即4cos2B-4cosB+1=0,解得cosB=$\frac{1}{2}$,
∵0<B<π,∴B=$\frac{π}{3}$,则$0<A<\frac{2π}{3}$,
∴$-\frac{π}{6}<2A-\frac{π}{6}<\frac{7π}{6}$,则$-\frac{1}{2}<sin(2A-\frac{π}{6})≤1$,
∴f(A)=$sin(2A-\frac{π}{6})-\frac{1}{2}$的取值范围是(-1,$\frac{1}{2}$].
点评 本题考查正弦函数的图象与性质,三角函数的周期公式,三角恒等变换中的公式的灵活应用,注意内角的范围,考查化简、变形能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<0或a=$\frac{1}{2}$ | B. | 0≤a<$\frac{1}{2}$ | C. | a>$\frac{1}{2}$ | D. | 不存在实数a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2] | B. | (-∞,3] | C. | [2,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com