精英家教网 > 高中数学 > 题目详情
若a,b,c>0且a(a+b+c)+bc=4-2
3
,则2a+b+c的最小值为(  )
A、
3
-1
B、
3
+1
C、2
3
+2
D、2
3
-2
分析:已知条件中出现bc,待求式子中有b+c,引导找b,c的不等式
解答:解:若a,b,c>0且a(a+b+c)+bc=4-2
3

所以a2+ab+ac+bc=4-2
3
4-2
3
=a2+ab+ac+bc=
1
4
(4a2+4ab+4ac+2bc+2bc)≤
1
4
(4a2+4ab+4ac+2bc+b2+c2)

(2
3
-2)2≤(2a+b+c)2

则(2a+b+c)≥2
3
-2

故选项为D.
点评:本题考查由已知与待求的式子凑出和的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a,b,c∈R,且a>b,则下列不等式一定成立的是(  )
A、a+c≥b-c
B、ac>bc
C、
c2
a-b
>0
D、(a-b)c2≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设函数f(x)在其定义域(0,+∞)上的取值不恒为0,且x>0,y∈R时,恒有f(xy)=yf(x).若a>b>c>1且a、b、c成等差数列,则f(a)f(c)与[f(b)]2的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c∈R,且a>b,则下列不等式一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c>0且a (a+b+c)+bc=9,则2a+b+c的最小值(  )

查看答案和解析>>

同步练习册答案