【题目】在独立性检验中,统计量有三个临界值:2.706,3.841和6.635.当时,有90%的把握说明两个事件有关;当时,有95%的把握说明两个事件有关,当时,有99%的把握说明两个事件有关,当时,认为两个事件无关.在一项打鼾与心脏病的调查中,共调查了2000人,经计算.根据这一数据分析,认为打鼾与患心脏病之间( )
A. 有95%的把握认为两者有关 B. 约95%的打鼾者患心脏病
C. 有99%的把握认为两者有关 D. 约99%的打鼾者患心脏病
科目:高中数学 来源: 题型:
【题目】在海岸A处,发现北偏东方向,距离A为 n mile的B处有一艘走私船,在A处北偏西方向,距离A为2 n mile的C处有一艘缉私艇奉命以n mile / h的速度追截走私船,此时,走私船正以10 n mile / h的速度从B处向北偏东方向逃窜,问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间。(本题解题过程中请不要使用计算器,以保证数据的相对准确和计算的方便)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=23x.
(1)证明:f(x)-g(x)=23-x,并求函数f(x),g(x)的解析式;
(2)解关于x不等式:g(x2+2x)+g(x-4)>0;
(3)若对任意x∈R,不等式f(2x)≥mf(x)-4恒成立,求实数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将边长为6的等边三角形各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正三棱柱形的容器.
(1)若这个容器的底面边长为,容积为,写出关于的函数关系式并注明定义域;
(2)求这个容器容积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数为上的偶函数”为事件,求事件的概率;
(2)求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区内有一块以为圆心半径为20米的圆形区域.广场,为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点,分别在圆周上;观众席为梯形内且在圆外的区域,其中,,且,在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过60米.设.
(1)求的长(用表示);
(2)对于任意,上述设计方案是否均能符合要求?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|﹣ x,(a>0). (Ⅰ)若a=3,解关于x的不等式f(x)<0;
(Ⅱ)若对于任意的实数x,不等式f(x)﹣f(x+a)<a2+ 恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)上一点P(3,t)到其焦点的距离为4.
(1)求p的值;
(2)过点Q(1,0)作两条直线l1 , l2与抛物线分别交于点A、B和C、D,点M,N分别是线段AB和CD的中点,设直线l1 , l2的斜率分别为k1 , k2 , 若k1+k2=3,求证:直线MN过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com