【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数为上的偶函数”为事件,求事件的概率;
(2)求的分布列和数学期望.
【答案】(1)0.24
(2)
ξ | 0 | 2 |
P | 0.24 | 0.76 |
【解析】试题分析:(1)要想求事件的概率,由“函数为上的奇函数”可知,将问题转化为“当时的概率”. 又因为表示该学生选修的课程门数和没有选修的课程门数的乘积,可将问题分为两种情况:该学生选修三门功课或三门功课都没选.不管哪种情况,都需要知道该学生选修甲、乙、丙的概率.所以,首先要求出该学生选修甲、乙、丙的概率.由题意可设该学生选修甲、乙、丙的概率分别为、、,联立方程组求解.再根据问题的两种情况进行求解.
(2)因为表示该学生选修的课程门数和没有选修的课程门数的乘积,分析可得以下2类对立事件:当选修三门功课或三门功课都没选时,;选修其中的一门时,.由(1)知时的概率为,则时的概率为.可将的分布列写出,再计算出数学期望.
试题解析:设该学生选修甲、乙、丙的概率分别为、、
依题意得
解得
(1)若函数为的奇函数,则.
当时,表示该学生选修三门功课或三门功课都没选.
事件的概率为.
(2)依题意知或,则的分布列为
由(1)知
的数学期望为
科目:高中数学 来源: 题型:
【题目】如图,已知圆N:x2+(y+ )2=36,P是圆N上的点,点Q在线段NP上,且有点D(0, )和DP上的点M,满足 =2 , =0.
(1)当P在圆上运动时,求点Q的轨迹方程;
(2)若斜率为 的直线l与(1)中所求Q的轨迹交于不同两点A、B,又点C( ,2),求△ABC面积最大值时对应的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在独立性检验中,统计量有三个临界值:2.706,3.841和6.635.当时,有90%的把握说明两个事件有关;当时,有95%的把握说明两个事件有关,当时,有99%的把握说明两个事件有关,当时,认为两个事件无关.在一项打鼾与心脏病的调查中,共调查了2000人,经计算.根据这一数据分析,认为打鼾与患心脏病之间( )
A. 有95%的把握认为两者有关 B. 约95%的打鼾者患心脏病
C. 有99%的把握认为两者有关 D. 约99%的打鼾者患心脏病
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某种商品在进价基础上每涨价1元,其销售量就减少10个,已知这种商品进价为40元/个,若按50元一个售出时能卖出500个.
(1)请写出售价x()元与利润y元之间的函数关系式;
(2)试计算当售价定为多少元时,获得的利润最大,并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
下面临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f(2-x)=f(x-1),且方程f(x)=x有两个相等的实根.
(1)求f(x)的解析式;
(2)设g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[2m,2n],若存在,求出m,n的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:①在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率, 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;④对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度越大.其中正确命题的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com