精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|ax-1|与g(x)=(a-1)x的图象没有交点,那么实数a的取值范围是(  )
A、(-∞,0]
B、(0,
1
2
)
C、[
1
2
,1)
D、[1,+∞)
考点:函数的图象
专题:函数的性质及应用
分析:分(1)当a≥1(2)当0<a<1(3)当a≤0三种情况,画出f(x)=|ax-1|与g(x)=(a-1)x的图象,利用图象确定有无交点.
解答: 解:(1)当a≥1时,f(x)=|ax-1|与g(x)=(a-1)x的图象:

两函数的图象恒有交点,
(2)当0<a<1时,f(x)=|ax-1|与g(x)=(a-1)x的图象:

要使两个图象无交点,斜率满足:a-1≥-a,
∴a
1
2
,故
1
2
≤a<1
(3)当a≤0时,f(x)=|ax-1|与g(x)=(a-1)x的图象:

两函数的图象恒有交点,
综上(1)(2)(3)知:
1
2
≤a<1
故选:C.
点评:本题主要考查函数图象的运用,如果函数的图象能画出,结合图象解题形象而直观,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n类(n∈N*),分别编号为1,2,…,n,买家共有m名(m∈N*,m<n),分别编号为1,2,…,m.若aij=
1,第i名买家购买第j类商品
0,第i名买家不购买第j类商品
1≤i≤m,1≤j≤n,则同时购买第1类和第2类商品的人数是(  )
A、a11+a12+…+a1m+a21+a22+…+a2m
B、a11+a21+…+am1+a12+a22+…+am2
C、a11a12+a21a22+…+am1am2
D、a11a21+a12a22+…+a1ma2m

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中真命题的个数有(  )
(1)集合{小于1的正有理数}是一个有限集;
(2)集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合;
(3)1,
3
2
6
4
,|-
1
2
|,0.5,这些数组成的集合有5个元素;
(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限内的点集.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(1)=l,且对一切x∈R都有f′(x)<4,则不等式f(x)>4x-3的解集为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线
x=t+1
y=2t+3
(t为参数)与圆
x=
5
cosθ+2
y=
5
sinθ
(θ为参数)的位置关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,曲线C的参数方程为
x=1+sin2θ
y=2sinθ+2cosθ
(θ为参数).若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,曲线M的极坐标方程为ρsin(θ-
π
4
)=
2
2
a(其中a为常数)
(1)当a=
9
10
时,曲线M与曲线C有两个交点A,B.求|AB|的值;
(2)若曲线M与曲线C只有一个公共点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x≥0},P={0,1,2},则有(  )
A、M?PB、M⊆P
C、M∩P=MD、M∩P=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin2x+sinx•cosx的最大值是
 

查看答案和解析>>

同步练习册答案