精英家教网 > 高中数学 > 题目详情

设常数a>1>b>0,则当a、b满足什么关系时,lg(ax-bx)>0的解集为 ________.

x∈(1,+∞)
分析:令u(x)=ax-bx,利用定义判断u(x)在x∈(0,+∞)上单调增,从而得到f(x)在x∈(0,+∞)上单调增,
由lg(ax-bx)>0的解集为(1,+∞)得,ax-bx>1 且 a-b=1.
解答:∵a>1>b>0,令u(x)=ax-bx,不等式即 lgu(x)>0,
则u(x)在实数集上是个增函数,且u(x)>0,又u(0)=0,∴应有 x>0,
∴u(x)在定义域(0,+∞)上单调增,∴f(x)=lg(ax-bx)在x∈(0,+∞)上单调增,
∴lg(ax-bx)>0,即 ax-bx>1,∴当 a-b=1时,解集为 (1,+∞),
故答案为 (1,+∞).
点评:本题考查指数函数、对数函数的单调性与特殊点,由真数u(x)的单调性确定f(x)的单调性,利用特殊点
lg1=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
2b
x
(x>0)在(0,4]上是减函数,在[4,+∞)是增函数,求b的值;
(2)证明:函数f(x)=x+
a
x
(常数a>0)在(0,
a
]上是减函数;
(3)设常数c∈(1,9),求函数f(x)=x+
c
x
在x∈[1,3]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设常数a≥0,函数f(x)=x-(lnx)2+2alnx-1.
(1)若f(x)在x=1处的切线为3ax-y+b=0,求a、b的值;
(2)证明:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

同步练习册答案