精英家教网 > 高中数学 > 题目详情

 

    在数列中,a1=2,b1=4,且成等差数列,成等比数列(

(Ⅰ)求a2a3a4b2b3b4,由此猜测的通项公式,并证明你的结论;

(Ⅱ)证明:

 

 

 

 

 

 

【答案】

 解:(Ⅰ)由条件得

由此可得

.   2分

猜测.  4分

用数学归纳法证明:

①当n=1时,由上可得结论成立.

②假设当n=k时,结论成立,即

那么当n=k+1时,

所以当n=k+1时,结论也成立.

由①②,可知对一切正整数都成立.    7分

(Ⅱ)

n≥2时,由(Ⅰ)知.    9分

综上,原不等式成立.    12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=a n+ln(1+
1
n
)
,则数列{an}的通项an=(  )
A、
2
ln
n
n-1
n=1
n≥2
B、
2
ln(1+n)
n=1
n≥2
C、1+ln(n+1)
D、2+lnn

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福州模拟)在数列{an}中,a1=2,点(an,an+1)(n∈N*)在直线y=2x上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an,求数列
1bn×bn+1
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(1)证明:数列{an-n}是等比数列,并求数列{an}的通项公式;
(2)记bn=
n
an-n
,数列{bn}的前n项和为Sn,求证:Sn+bn
16
9

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)令bn=(-1)nan,求数列{bn}的前2n项和T2n

查看答案和解析>>

同步练习册答案