精英家教网 > 高中数学 > 题目详情
(2012•吉林二模)下列函数f(x)中,满足“对任意的x1,x2∈(-∞,0),当x1<x2时,总有f(x1)>f(x2)”的是(  )
分析:根据题目所给条件,说明函数f(x)在(-∞,0)上应为减函数,其中选项A是二次函数,C是反比例函数,D是指数函数,图象情况易于判断,B是对数型的,从定义域上就可以排除.
解答:解:函数满足“对任意的x1,x2∈(-∞,0),当x1<x2时,总有f(x1)>f(x2)”,说明函数在(-∞,1)上为减函数.
f(x)=(x+1)2是二次函数,其图象是开口向上的抛物线,对称轴方程为x=-1,所以函数在(-∞,-1)单调递减,在(-1,+∞)单调递增,不满足题意.
函数f(x)=ln(x-1)的定义域为(1,+∞),所以函数在(-∞,0)无意义.
对于函数f(x)=
1
x
,设x1<x2<0,则f(x1)-f(x2)=
1
x1
-
1
x2
=
x2-x1
x1x2
,因为x1,x2∈(-∞,0),且x1<x20,x2-x1>0,则
x2-x1
x1x2
>0
,所以f(x1)>f(x2),故函数f(x)=
1
x
在(-∞,0)上为减函数.
函数f(x)=ex在(-∞,+∞)上为增函数.
故选C.
点评:本题考查了函数的单调性,解决此题的关键,是能根据题目条件断定函数为(-∞,0)上的减函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设集合A={x|0≤x<1},B={x|1≤x≤2},函数f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,则x0的取值范围是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)△ABC内角A,B,C的对边分别是a,b,c,若c=2
3
b
sin2A-sin2B=
3
sinBsinC
,则A=
π
6
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)执行程序框图,若输出的结果是
15
16
,则输入的a为(  )

查看答案和解析>>

同步练习册答案