精英家教网 > 高中数学 > 题目详情

过椭圆引两条切线PA、PB、A、B为切点,如直线AB与x轴、y轴交于M、N两点.

(1)若,求P点坐标;

(2)求直线AB的方程(用表示);

(3)求△MON面积的最小值.(O为原点)。

 

【答案】

(1)();(2)AB的直线方程为:x0x+y0y=4

(3)当且仅当.

【解析】

试题分析:(1), ∴OAPB的正方形。

        由     ∴P点坐标为(

(2)设A(x1,y1),B(x2,y2

则PA、PB的方程分别为,而PA、PB交于P(x0,y0

即x1x0+y1y0=4,x2x0+y2y0=4,∴AB的直线方程为:x0x+y0y=4

    (3)由

 

当且仅当.

考点:本题主要考查直线和圆锥曲线的位置关系的综合运用。

点评:具有一定的难度,解题时要认真审题,注意合理地进行等价转化。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过椭圆C:
x2
8
+
y2
4
=1上一点P(x0y0)向圆O:x2+y2=4
引两条切线PA、PB、A、B为切点,如直线AB与x轴、y轴交于M、N两点.
(1)若
PA
PB
=0
,求P点坐标;
(2)求直线AB的方程(用x0,y0表示);
(3)求△MON面积的最小值.(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上的动点P向圆0:x2+y2=b2引两条切线PA,PB,设切点分别是A,B,若直线AB与x轴,y轴分别交于M,N两点,则△MON面积的最小值是
b3
a
b3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆的中心在坐标原点,焦点在x轴上,并且焦距为2,短轴与长轴的比是
3
2

(1)求椭圆的方程;
(2)已知椭圆中有如下定理:过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任意一点M(x0,y0)的切线唯一,且方程为
x0x
a2
+
y0y
b2
=1
,利用此定理求过椭圆的点(1,
3
2
)
的切线的方程;
(3)如图,过椭圆的右准线上一点P,向椭圆引两条切线PA,PB,切点为A,B,求证:A,F,B三点共线.

查看答案和解析>>

科目:高中数学 来源:2010年海南省高二上学期第二次月考理科数学卷 题型:解答题

(本小题满分12分)过椭圆引两条切线PA、PB、A、B为切点,如直线AB与x轴、y轴交于M、N两点.

(1)若,求P点坐标;

(2)求直线AB的方程(用表示);

(3)求△MON面积的最小值.(O为原点)

 

查看答案和解析>>

同步练习册答案