¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬²¢ÇÒ½¹¾àΪ2£¬¶ÌÖáÓ볤ÖáµÄ±ÈÊÇ
3
2
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÒÑÖªÍÖÔ²ÖÐÓÐÈç϶¨Àí£º¹ýÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
ÉÏÈÎÒâÒ»µãM£¨x0£¬y0£©µÄÇÐÏßΨһ£¬ÇÒ·½³ÌΪ
x0x
a2
+
y0y
b2
=1
£¬ÀûÓô˶¨ÀíÇó¹ýÍÖÔ²µÄµã(1£¬
3
2
)
µÄÇÐÏߵķ½³Ì£»
£¨3£©Èçͼ£¬¹ýÍÖÔ²µÄÓÒ×¼ÏßÉÏÒ»µãP£¬ÏòÍÖÔ²ÒýÁ½ÌõÇÐÏßPA£¬PB£¬ÇеãΪA£¬B£¬ÇóÖ¤£ºA£¬F£¬BÈýµã¹²Ïߣ®
·ÖÎö£º£¨1£©ÉèÍÖÔ²µÄ·½³ÌΪ
x2
a2
+
y2
b2
=1
£¬ÀûÓÃc=1¼°
b
a
=
3
2
£¬a2=b2+c2£¬½âµÃ¼´¿É£®
£¨2£©ÀûÓøø³öµÄ¶¨Àí´úÈë¼´¿É£»
£¨3£©ÉèÍÖÔ²ÓÒ×¼ÏßÉϵĵãP£¨4£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓã¨2£©Öиø³öµÄ¶¨Àí¿ÉµÃ£ºÇÐÏßPA£¬PB£¬½ø¶øµÃµ½Ö±ÏßABµÄ·½³ÌÊÇx+
y0
3
y=1
£®µãF£¨1£¬0£©Âú×ã´Ë·½³Ì£¬¼´¿ÉÖ¤Ã÷A£¬F£¬B¹²Ïߣ®
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£º£¨1£©ÉèÍÖÔ²µÄ·½³ÌΪ
x2
a2
+
y2
b2
=1
£¬ÓÉc=1¼°
b
a
=
3
2
£¬ÓÖa2=b2+c2£®
ÁªÁ¢½âµÃa=2£¬b=
3
£¬
¡àÍÖÔ²µÄ·½³ÌΪ
x2
4
+
y2
3
=1
£®
£¨2£©Óɶ¨ÀíµÃ¹ýµãA(1£¬
3
2
)
µÄÇÐÏߵķ½³ÌΪ
x
4
+
y
2
=1
£¬¼´x+2y-4=0£®
£¨3£©ÉèÍÖÔ²ÓÒ×¼ÏßÉϵĵãP£¨4£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòAPµÄ·½³ÌΪ
x1x
4
+
y1y
3
=1
£¬BPµÄ·½³ÌΪ
x2x
4
+
y2y
3
=1
£®
ÓÖµãP£¨4£¬y0£©ÔÚÁ½ÌõÇÐÏßÉÏ£¬¡àx1+
y0
3
y1=1
£¬x2+
y0
3
y2=1
£®
¡àÖ±ÏßABµÄ·½³ÌÊÇx+
y0
3
y=1
£®
¸ÃÖ±Ïß¹ýµãF£¨1£¬0£©£¬¹ÊA£¬F£¬B¹²Ïߣ®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢ÇÐÏßµÄÐÔÖÊ¡¢Èýµã¹²ÏߵȻù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔ­µãO£¬½¹µãÔÚxÖáÉÏ£¬¶ÌÖ᳤Ϊ2£¬ÇÒÁ½¸ö½¹µãºÍ¶ÌÖáµÄÁ½¸ö¶ËµãǡΪһ¸öÕý·½ÐεĶ¥µã£®¹ýÓÒ½¹µãFÓëxÖá²»´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚP£¬QÁ½µã£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µ±Ö±ÏßlµÄбÂÊΪ1ʱ£¬Çó¡÷POQµÄÃæ»ý£»
£¨3£©ÔÚÏ߶ÎOFÉÏÊÇ·ñ´æÔÚµãM£¨m£¬0£©£¬Ê¹µÃÒÔMP£¬MQΪÁڱߵÄƽÐÐËıßÐÎÊÇÁâÐΣ¿Èô´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔ­µã£¬ÇÒ¾­¹ýµãM(1£¬
2
5
5
)
£¬N(-2£¬
5
5
)
£¬ÈôÔ²CµÄÔ²ÐÄÓëÍÖÔ²µÄÓÒ½¹µãÖغϣ¬Ô²µÄ°ë¾¶Ç¡ºÃµÈÓÚÍÖÔ²µÄ¶Ì°ëÖ᳤£¬ÒÑÖªµãA£¨x£¬y£©ÎªÔ²CÉϵÄÒ»µã£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³ÌºÍÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Çó
AC
AO
+2|
AC
-
AO
|
£¨OΪ×ø±êÔ­µã£©µÄÈ¡Öµ·¶Î§£»
£¨3£©Çóx2+y2µÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÍÖÔ²ÉϵãP(3
2
£¬4)
µ½Á½½¹µãµÄ¾àÀëÖ®ºÍÊÇ12£¬ÔòÍÖÔ²µÄ±ê×¼·½³ÌÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬½¹¾àΪ6
3
£¬ÇÒÍÖÔ²ÉÏÒ»µãµ½Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍΪ12£¬ÔòÍÖÔ²µÄ·½³ÌΪ
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔ­µãO£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ
2
2
£¬×ø±êÔ­µãOµ½¹ýÓÒ½¹µãFÇÒбÂÊΪ1µÄÖ±ÏߵľàÀëΪ
2
2
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Éè¹ýÓÒ½¹µãFÇÒÓë×ø±êÖá²»´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚP¡¢QÁ½µã£¬ÔÚÏ߶ÎOFÉÏÊÇ·ñ´æÔÚµãM£¨m£¬0£©£¬Ê¹µÃÒÔMP¡¢MQΪÁڱߵÄƽÐÐËıßÐÎÊÇÁâÐΣ¿Èô´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸