精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.
(Ⅰ)详见解析;(Ⅱ)

试题分析:(Ⅰ)根据两个平面垂直的条件,在平面内找到一条垂直于平面的直线即可,取的中点,可证明平面;(Ⅱ) 二面角与二面角相等,二面角的平面角为,求出即可.(解法2采用的是向量的方法,求出平面的法向量,即可证明平面平面;求出平面的法向量,即可求出二面角.)
(Ⅰ)证明:取的中点的中点,连,则 

平面平面,∴
是平行四边形,.
,又平面.
平面.平面.
从而平面平面.                                6分
(Ⅱ)二面角与二面角相等,
由(Ⅰ)知二面角的平面角为.


为正方形,
∴二面角的大小为.                            12分
解法2:取的中点,连.
,又平面.
为原点建立如图空间直角坐标系

则由已知条件有:
设平面的法向量为
则由

可取 
平面平面
∴平面的法向量可取为.
, ∴,∴平面平面.          6分
(Ⅱ)设平面的法向量为
则由

可取
∵平面的法向量可取为
∴锐二面角的余弦值为
∴二面角的大小为.                                12分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面是等边三角形,已知.

(1)设上的一点,证明:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.

(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,,AD=AB=1,AC和BD交于O点.
(I)求证:平面PBD丄平面PAC.
(II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为1的正方体AC1中,点P为侧面BB1C1C内一动点(含边界),若动点P始终满足PA⊥BD1,则动点P的轨迹的长度为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于空间中的三条不同的直线,有下列三个条件:①三条直线两两平行;②三条直线共点;③有两条直线平行,第三条直线和这两条直线都相交.其中,能作为这三条直线共面的充分条件的有(   )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在四边形中,,将沿折起,使平面平面,构成三棱锥,则在三棱锥中,下列命题正确的是(  )
A.平面平面B.平面平面
C.平面平面D.平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角梯形中,是等边三角形,平面⊥平面.

(1)求二面角的余弦值;
(2)求到平面的距离.

查看答案和解析>>

同步练习册答案