精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,平面平面是等边三角形,已知.

(1)设上的一点,证明:平面平面
(2)求二面角的余弦值.
(1)详见试题解析;(2)二面角的余弦值为.

试题分析:(1)由勾股定理得:。根据面面垂直的性质定理,可得平面
再由面面垂直的判定定理得:平面平面
(2)思路一、由于,故可以为原点建立空间直角坐标系,利用向量方法可求得二面角的余弦值.
思路二、作出二面角的平面角,然后求平面角的余弦值.
由(1)知平面,所以平面平面
的垂线,该垂线即垂直平面
再过垂足作的垂线,将垂足与点连起来,便得二面角的平面角
试题解析:(1)证明:在中,由于,,,
,故.

,又
故平面平面                                             5分
(2)法一、如图建立空间直角坐标系,, ,

  , .
设平面的法向量, 由
, .
设平面的法向量,
,令

,二面角的余弦值为          12分
法二、

由(1)知平面,所以平面平面
,则平面
再过,连结,则就是二面角的平面角
由题设得。由勾股定理得:
所以.
二面角的余弦值为                                     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)如图,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求证:P,Q,R三点共线.

(2)如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,  且EH与FG相交于点K. 求证:EH,BD,FG三条直线相交于同一点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平面,四边形是矩形,,M,N分别是AB,PC的中点,

(1)求平面和平面所成二面角的大小,
(2)求证:平面
(3)当的长度变化时,求异面直线PC与AD所成角的可能范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱拄中,侧面,已知.

(Ⅰ)求证:平面
(Ⅱ)试在棱(不包含端点)上确定一点的位置,使得
(Ⅲ)在(Ⅱ)的条件下,求和平面所成角正弦值的大小.                                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形为矩形,平面⊥平面上的一点,且⊥平面

(1)求证:
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正三角形的三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过作球的截面,则截面面积的最小值为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱
A.B.C.D.

查看答案和解析>>

同步练习册答案