精英家教网 > 高中数学 > 题目详情
如图所示,平面,四边形是矩形,,M,N分别是AB,PC的中点,

(1)求平面和平面所成二面角的大小,
(2)求证:平面
(3)当的长度变化时,求异面直线PC与AD所成角的可能范围.
(1);(2)详见解析;(3)

试题分析:(1)求二面角大小时,需先找后求,∵平面,则,又,∴可证,从而,则就是平面和平面所成二面角的平面角,∵;(2)可证明直线垂直于面内的两条相交直线,也可利用转化法,先证明与平行的一直线垂直于面,从而平面,该题中,取中点,连接,可证明四边形是平行四边形,从而,先证明⊥面,从而平面;(3)异面直线所成的角是空间角,应该转化为平面角来解决,仍然应该先找后求,由,则就是异面直线所成的角(或其补角),∵,∴,从而,在中,设,先确定的范围,再求的范围.

试题解析:(1) PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,故∠PDA是平面PCD与平面ABCD所成二面角的平面角,在Rt△PAD中,PA⊥AD,PA=AD,∴∠PDA=45°       3分
(2)如图,取PD中点E,连结AE,EN,又M,N分别是AB,PC的中点,∴ENCDAB ∴AMNE是平行四边形 ∴MN∥AE,在等腰Rt△PAD中,AE是斜边的中线,∴AE⊥PD,又CD⊥AD,CD⊥PD ∴CD⊥平面PAD,∴CD⊥AE,又PD∩CD=D,∴AE⊥平面PCD,∴MN⊥平面PCD。     8分
(3)由,则就是异面直线所成的角(或其补角),∵,∴,∴,在中,设,∴,又∵,∴,即异面直线所成的角的范围是        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥平面,底面为直角梯形,,且,.

(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;
(2)当,且求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面是等边三角形,已知.

(1)设上的一点,证明:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱的底面是平行四边形,且,,,的中点,平面.

(Ⅰ)证明:平面平面
(Ⅱ)若,试求异面直线所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中正确的是(  )
A.棱柱的面中,至少有两个面互相平行
B.棱柱的两个互相平行的平面一定是棱柱的底面
C.棱柱的一条侧棱的长叫做棱柱的高
D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题正确的是(  )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.
D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中( )

A.         B.相交
C.         D.所成的角为 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,EF=,EF与面AC的距离为2,则该多面体的体积为____________.

查看答案和解析>>

同步练习册答案