精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥平面,底面为直角梯形,,且,.

(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;
(2)当,且求四棱锥的体积.
(1)见解析;(2).

试题分析:(1)取PD中点G,连接AG、FG,证明即可;(2)由条件可得为等腰直角三角形,利用三棱锥的体积公式计算即可.
试题解析::(1)当时,取PD中点G,连接AG、FG,则
平面 ∴平面
(2)∵平面 ∴为等腰直角三角形
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)如图,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求证:P,Q,R三点共线.

(2)如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,  且EH与FG相交于点K. 求证:EH,BD,FG三条直线相交于同一点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平面,四边形是矩形,,M,N分别是AB,PC的中点,

(1)求平面和平面所成二面角的大小,
(2)求证:平面
(3)当的长度变化时,求异面直线PC与AD所成角的可能范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形为矩形,平面⊥平面上的一点,且⊥平面

(1)求证:
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.

(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以正方体的任意4个顶点为顶点的几何形体有             
①空间四边形;
②每个面都是等边三角形的四面体;
③最多三个面是直角三角形的四面体;
④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直三棱柱的6个顶点都在球的球面上,若,,则球的半径为  (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长都相等的一个正四面体和一个正八面体,把它们拼起来,使面重合,则所得多面体是(    )
A.七面体B.八面体C.九面体D.十面体

查看答案和解析>>

同步练习册答案