精英家教网 > 高中数学 > 题目详情
(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.

(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.
(I)见解析(II)
(I)在平面ABC内,过点P作直线l∥BC
∵直线l?平面A1BC,BC?平面A1BC,
∴直线l∥平面A1BC,
∵△ABC中,AB=AC,D是BC的中点,
∴AD⊥BC,结合l∥BC得AD⊥l
∵AA1⊥平面ABC,l?平面ABC,∴AA1⊥l
∵AD、AA1是平面ADD1A1内的相交直线
∴直线l⊥平面ADD1A1
(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF
由(I)知MN⊥平面A1AE,结合MN?平面A1MN得平面A1MN⊥平面A1AE,
∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,
∵EF⊥A1M,EF是AF在平面A1MN内的射影,
∴AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角
设AA1=1,则由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1
又∵P为AD的中点,∴M是AB的中点,得AP=,AM=1
Rt△A1AP中,A1P==;Rt△A1AM中,A1M=
∴AE==,AF==
∴Rt△AEF中,sin∠AFE==,可得cos∠AFE==
即二面角A﹣A1M﹣N的余弦值等于
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥平面,底面为直角梯形,,且,.

(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;
(2)当,且求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得点在平面ADC上的正投影O恰好落在线段上,如图2所示,点分别为线段PC,CD的中点.

(I) 求证:平面OEF//平面APD;
(II)求直线CD与平面POF;
(III)在棱PC上是否存在一点,使得到点P,O,C,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于空间中的三条不同的直线,有下列三个条件:①三条直线两两平行;②三条直线共点;③有两条直线平行,第三条直线和这两条直线都相交.其中,能作为这三条直线共面的充分条件的有(   )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在四边形中,,将沿折起,使平面平面,构成三棱锥,则在三棱锥中,下列命题正确的是(  )
A.平面平面B.平面平面
C.平面平面D.平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中( )

A.         B.相交
C.         D.所成的角为 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD的三视图如下图所示,E是侧棱PC上的动点.


(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置,都有BD⊥AE?证明你的结论;
(3)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图的多面体中,⊥平面,
的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:

查看答案和解析>>

同步练习册答案