精英家教网 > 高中数学 > 题目详情
一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中( )

A.         B.相交
C.         D.所成的角为 
D

试题分析:根据题意,由于,A、B、C、D为原正方体的顶点,则在原来的正方体中,折叠为立体图形可知,为两个相邻的面对角线,因此所成的角为,故可知答案为D。
点评:主要是考查了正方体的侧面展开图的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,平面,四边形是矩形,,M,N分别是AB,PC的中点,

(1)求平面和平面所成二面角的大小,
(2)求证:平面
(3)当的长度变化时,求异面直线PC与AD所成角的可能范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是正方形, 
(Ⅰ)求证:平面平面
(Ⅱ)求三棱锥的高

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.

(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方形的边长为2,分别为边的中点,是线段的中点,如图,把正方形沿折起,设

(1)求证:无论取何值,不可能垂直;
(2)设二面角的大小为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形ABCD中,AD//BC,,,如图(1).把沿翻折,使得平面,如图(2).

(Ⅰ)求证:
(Ⅱ)求三棱锥的体积;
(Ⅲ)在线段上是否存在点N,使得?若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为(   ).
A.8B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知正方体的棱长为1,动点在此正方体的表面上运动,且,记点的轨迹的长度为,则函数的图像可能是(    )

查看答案和解析>>

同步练习册答案