精英家教网 > 高中数学 > 题目详情
如图,四边形为矩形,平面⊥平面上的一点,且⊥平面

(1)求证:
(2)求证:∥平面
(1)证明过程详见解析;(2)证明过程详见解析.

试题分析:本题主要考查空间两条直线的位置关系、直线与平面垂直和平行等基础知识,考查学生的空间想象能力、运算能力和推理论证能力.第一问,利用平面与平面垂直的性质证明⊥平面,再利用直线与平面垂直的判定定理证明⊥平面,即可得证;第二问,利用线面平行的判定定理证明,利用中点,的中点,所以,即可.
试题解析:(1)证明:∵平面⊥平面,平面∩平面=
⊥平面
,则.             3分
⊥平面,则
=,∴⊥平面,∴.           7分
(2)设=,连接,易知的中点,

⊥平面,则
,∴中点.        10分
中,
平面平面
∥平面.               14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥平面,底面为直角梯形,,且,.

(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;
(2)当,且求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面是等边三角形,已知.

(1)设上的一点,证明:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱的底面是平行四边形,且,,,的中点,平面.

(Ⅰ)证明:平面平面
(Ⅱ)若,试求异面直线所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.

(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥A-BCD中,平面ABD⊥平面BCD,BC⊥CD,BC=CD=4,AB=AD=,则三棱锥A-BCD的外接球的大圆面积为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于空间中的三条不同的直线,有下列三个条件:①三条直线两两平行;②三条直线共点;③有两条直线平行,第三条直线和这两条直线都相交.其中,能作为这三条直线共面的充分条件的有(   )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD的三视图如下图所示,E是侧棱PC上的动点.


(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置,都有BD⊥AE?证明你的结论;
(3)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

同步练习册答案