精英家教网 > 高中数学 > 题目详情
下列命题正确的是(  )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.
D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.
C

试题分析:有两个面平行,其余各面都是四边形的几何体,A错;有两个面平行, 其余各面都是平行四边形的几何体如图所示,B错;用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,D错;由棱柱的定义,C正确;
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.

(1)求异面直线所成角的余弦值;
(2)求二面角的正弦值;
(3)求此几何体的体积的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ).求证:
(Ⅱ).设平面与半圆弧的另一个交点为,
①.求证://;
②.若,求三棱锥E-ADF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平面,四边形是矩形,,M,N分别是AB,PC的中点,

(1)求平面和平面所成二面角的大小,
(2)求证:平面
(3)当的长度变化时,求异面直线PC与AD所成角的可能范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为正方形,底面分别是的中点.

(1)求证:平面
(2)求证:平面平面
(3)若,求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长都相等的一个正四面体和一个正八面体,把它们拼起来,使面重合,则所得多面体是(    )
A.七面体B.八面体C.九面体D.十面体

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于四面体ABCD,以下命题中,真命题的序号为       (填上所有真命题的序号)
①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,则BD⊥AC;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方形的边长为2,分别为边的中点,是线段的中点,如图,把正方形沿折起,设

(1)求证:无论取何值,不可能垂直;
(2)设二面角的大小为,当时,求的值.

查看答案和解析>>

同步练习册答案