精英家教网 > 高中数学 > 题目详情
在三棱拄中,侧面,已知.

(Ⅰ)求证:平面
(Ⅱ)试在棱(不包含端点)上确定一点的位置,使得
(Ⅲ)在(Ⅱ)的条件下,求和平面所成角正弦值的大小.                                    
(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)

试题分析:(Ⅰ)欲证线面垂直,先考察线线垂直,易证,可试证,由题目给条件易想到利用勾股定理逆定理;(Ⅱ)要想在棱找到点,使得,易知,那么这时就需要使,这时就转化为一个平面几何问题:以矩形的边为直径作圆,与的公共点即为所求,易知只有一点即的中点 ,将以上分析写成综合法即可,找到这一点后,也可用别的方法证明,如勾股定理逆定理;(Ⅲ)求直线与平面所成的角,根据其定义,应作出这条直线在平面中的射影,再求这条直线与其射影的夹角(三角函数值),本题可考虑点在平面的射影,易知平面与侧面垂直,所以点在平面的射影必在两平面的交线上,过的垂线交,则为所求的直线与平面的夹角.
试题解析:(Ⅰ)因为,所以
,所以
因为侧面平面,所以,又
所以,平面                               4分
(Ⅱ)取的中点,连接 ,,等边中,
同理,,所以,可得,所以
因为侧面平面,所以,且
所以平面,所以;                                  8分
(Ⅲ)侧面平面,得平面平面
的垂线交平面
连接,则为所求,
因为  ,,所以 ,的中点 得的中点,
 , 由(2)知 ,所以                  13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

将棱长为的正方体截去一半(如图甲所示)得到如图乙所示的几何体,点分别是的中点.

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面是等边三角形,已知.

(1)设上的一点,证明:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,的中点.

(Ⅰ)求证: 平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.

(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,,AD=AB=1,AC和BD交于O点.
(I)求证:平面PBD丄平面PAC.
(II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,且长度分别为1、、      3,则这个三棱锥的外接球的表面积为 (   )
A.       B.        C.        D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正四棱锥和一个正四面体的所有棱长都相等,将它们的一个三角形重合在一起,组成一个新的几何体,则新几何体是(    )
A.五面体B.六面体C.七面体D.八面体

查看答案和解析>>

同步练习册答案