精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱中,的中点.

(Ⅰ)求证: 平面
(Ⅱ)求二面角的余弦值.
(Ⅰ)详见解析;(Ⅱ)

试题分析:(Ⅰ)证明线面平行常用以下两种方法:一是用线面平行的判定定理,二是用面面平行的性质.本题用这两种方法都行;
(Ⅱ)首先应考虑作出平面截三棱柱所得的截面.作出该截面便很容易得到二面角的平面角即为.
本题也可用向量解决.
试题解析:(Ⅰ)法一:连结,交,连结,则,从而平面.
         
法二:取的中点,连结,易得平面,从而平面.
(Ⅱ)的中点,连结,易得平面就是平面,
平面,所以,所以就是该二面角的平面角.
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知梯形分别是上的点,.沿将梯形翻折,使平面⊥平面(如图).的中点.

(1)当时,求证: ;
(2)当变化时,求三棱锥体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱拄中,侧面,已知.

(Ⅰ)求证:平面
(Ⅱ)试在棱(不包含端点)上确定一点的位置,使得
(Ⅲ)在(Ⅱ)的条件下,求和平面所成角正弦值的大小.                                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,棱底面,=1,的中点.

(1)证明平面平面; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,曲线处的切线过点.
(Ⅰ)求函数的解析式;
(Ⅱ)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在中,上的高,沿折起,使.
(Ⅰ)证明:平面⊥平面
(Ⅱ)若,求三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平行四边形中,的面积为,则平行四边形的面积为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中(     )

A.              B.
C. AB与CD所成的角为    D. AB与CD相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,空间四边形的对棱的角,且,平行于的截面分别交

(1)求证:四边形为平行四边形;
(2)的何处时截面的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案