精英家教网 > 高中数学 > 题目详情
已知,试证明a,b,c至少有一个不小于1。
证明:假设a,b,c都小于1,即a<1,b<1,c<1,
则有a+b+c<3,

a+b+c<3矛盾,
所以a,b,c至少有一个不小于1。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点(a,b)中心对称”.设函数f(x)=
x+1-a
a-x
,定义域为A.
(1)试证明y=f(x)的图象关于点(a,-1)成中心对称;
(2)当x∈[a-2,a-1]时,求证:f(x)∈[-
1
2
, 0]

(3)对于给定的x1∈A,设计构造过程:x2=f(x1),x3=f(x2),…,xn+1=f(xn).如果xi∈A(i=2,3,4…),构造过程将继续下去;如果xi∉A,构造过程将停止.若对任意x1∈A,构造过程都可以无限进行下去,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,a=x2+
12
,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的角A,B,C所对的边分别是a,b,c,设向量
m
=(a,b),
n
=(sinB,sinA),
p
=(b-2,a-2).
(1)若
m
n
,试判断△ABC的形状并证明;
(2)若
m
p
,边长c=2,∠C=
π
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b.则函数y=g(x)的图象关于点(a,b)成中心对称”.设函数f(x)=
x+1-aa-x
,定义域为A.
(1)试证明y=f(x)的图象关于点(a,-1)成中心对称;
(2)写出f(x)的单调区间(不证明),并求当x∈[a-2,a-1]时,函数f(x)的值域;
(3)对于给定的x1∈A,设计构造过程:x2=f(x1),x3=f(x2),…,xn+1=f(xn).如果xi∈A(i=1,2,3,4…),构造过程将继续下去;如果xi∉A,构造过程将停止.若对任意x1∈A,构造过程都可以无限进行下去,求a的值.

查看答案和解析>>

同步练习册答案