精英家教网 > 高中数学 > 题目详情
在三棱锥S-ABC中,SA⊥平面ABC,SA=AB=AC=
3
3
BC,点D是BC边的中点,点E是线段AD上一点,且AE=4DE,点M是线段SD上一点.
(1)求证:BC⊥AM;
(2)若AM⊥平面SBC,求证EM∥平面ABS.
分析:对(1),通过证明线面垂直⇒线线垂直即可;
对(2),将空间几何问题转化为平面几何问题,在△SAD中利用M、E分线段SD、AD成等比例,
证明ME与SA平行,再由线线平行⇒线面平行.
解答:证明:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,
∵SA⊥平面ABC,BC?平面ABC,∴SA⊥BC,SA∩AD=A,∴BC⊥平面SAD
∵AM?平面SAD,
∴BC⊥AM.
(2)∵AM⊥面SBC,SD?平面SBC⇒AM⊥SD,
∵SA=AB=AC=
3
3
BC,可设BC=3,SA=
3

在△ABC中,cos∠A=
3+3-9
3
×
3
=-
1
2
,∴∠A=
3
∴AD=
3
2


在Rt△SAD中,
SA
AD
=2=
AM
MD
=
SM
AM
,∴SM=4MD,∵AE=4ED,

∴ME∥SA,ME?平面ABS,SA?平面ABS.
∴EM∥平面ABS.
点评:本题考查直线与平面平行、垂直的判定.利用平面几何知识证明线线平行是本题证明(II)的关键;另:将空间几何问题转化为平面几何问题是解决问题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为边长为1的等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)证明:SA⊥BC;
(Ⅲ)求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求证SA⊥SC;
(Ⅱ)在平面几何中,推导三角形内切圆的半径公式r=
2S
l
(其中l是三角形的周长,S是三角形的面积),常用如下方法(如右图):
①以内切圆的圆心O为顶点,将三角形ABC分割成三个小三角形:△OAB,△OAC,△OB精英家教网C.
②设△ABC三边长分别为a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,则r=
2S
l

类比上述方法,请给出四面体内切球半径的计算公式(不要求说明类比过程),并利用该公式求出三棱锥S-ABC内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O为BC中点.
(1)求证:SO⊥平面ABC
(2)在线段AB上是否存在一点E,使二面角B-SC-E的平面角的余弦值为
15
5
?若存在,确定E点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,侧棱SC⊥平面SAB,SA⊥BC,侧面△SAB,△SBC,△SAC的面积分别为1,
3
2
,3,则此三棱锥的外接球的表面积为(  )

查看答案和解析>>

同步练习册答案