精英家教网 > 高中数学 > 题目详情

a>0且a≠1,f(x)=loga(x),(x≥1).

(1)求f(x)的反函数f-1(x)和反函数的定义域;

(2)若,f-1(n)<,求a的取值范围.

答案:
解析:

  解:(1)令  ①

  由①可得           ②

①+②得

  令显然上是增函数,

  因此,当时,的定义域是

  当时,的定义域是

  (2)由(1)知

  

  

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0且a≠1,f(x)=-x2+ax,对x∈(-
1
2
1
2
)
均有f(x)>0,则a∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0且a≠1,f(x)=loga(x+
x2-1
)
(x≥1)
(1)求函数f(x)的反函数f-1(x)及其定义域.(2)若f-1(n)<
3n+3-n
2
(n∈N*)
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数f-1(x),当a=
2
-1
时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)已知k∈R,a>0且a≠1,b>0且b≠1,函数f(x)=ax+k•bx
(1)如果实数a、b满足a>1,ab=1,试判断函数f(x)的奇偶性,并说明理由;
(2)设a>1>b>0,k≤0,判断函数f(x)在R上的单调性并加以证明;
(3)若a=2,b=
12
,且k>0,问函数f(x)的图象是不是轴对称图形?如果是,求出函数f(x)图象的对称轴;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009年重庆十一中高考数学模拟试卷(10)(解析版) 题型:解答题

已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案