精英家教网 > 高中数学 > 题目详情
与圆(x-3)2+(y-3)2=8相切,且在x、y轴上截距相等的直线有(  )
A.4条B.3条C.2条D.1条
由圆的方程(x-3)2+(y-3)2=8,可得圆心坐标为C(3,3),半径是r=2
2

由|OC|=
9+9
=3
2
>r,故原点在圆外.
当所求直线的方程的截距为0时,直线过原点,显然有两条直线满足题意.
当截距不为0时,设所求直线的方程为:x+y=a(a≠0)
则圆心到直线的距离d=
|3+3-a|
2
=e=2
2
,由此求得a=2,或 a=10,
由于满足题意a的值有2个,所以满足题意的直线有2条.
综上可得,与圆(x-3)2+(y-3)2=8 相切,且在两坐标轴上截距相等的直线中,过原点的切线有两条,斜率为-1的切线也有两条;共4条,
故选 A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

求过圆:x2+y2-2x+2y+1=0与圆:x2+y2+4x-2y-4=0的交点,圆心在直线:x-2y-5=0的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

圆C与直线y=x-2相切于点P,且圆心C在x轴的正半轴上,半径r=
2

(1)求圆C的方程;
(2)求△POC的面积.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB
AD
=0,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(4,2)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为(  )
A.3x+2y+4=0B.3x+2y-4=0C.3x-2y+4=0D.3x-2y-4=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点P(2,0)引圆x2+y2-2x+6y+9=0的切线,切点为A、B,则直线AB的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:(x-1)2+(y+2)2=9,直线l:(m+1)x-y-2m-3=0(m∈R)
(1)求证:无论m取什么实数,直线恒与圆交于两点;
(2)求直线l被圆C所截得的弦长最小时的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若⊙P:(x-2)2+(y-2)2=18上恰好有三个不同的点到直线l:ax+by=0的距离为2
2
,则l的倾斜角为(  )
A.
π
12
π
6
B.
12
π
6
C.
π
12
π
4
D.
12
π
12

查看答案和解析>>

同步练习册答案