精英家教网 > 高中数学 > 题目详情
若直线y=x与双曲线=1(a>0,b>0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率为(    )

A.                 B.2              C.                 D.4

B

解析:直线x=c与双曲线的一个交点为(c,),故=,即2c2-3ac-2a2=0,

∴c=2a,e=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的焦点为F1(-c,0)、F2(c,0)(c>0),焦点F2到渐近线的距离为
3
,两条准线之间的距离为1.
(1)求此双曲线的方程;
(2)若直线y=x+2与双曲线分别相交于A、B两点,求线段AB的长;
(3)过双曲线焦点F2且与(2)中AB平行的直线与双曲线分别相交于C、D两点,若
AB
+
AD
=
AC
,求
1
2
(
OA
OD
)tan<
OA
OD
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y= x与双曲线(a>0,b>0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率为

A.                   B.2                    C.2                 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的方程为x2-y2=4,椭圆E以双曲线C的顶点为焦点,且椭圆右顶点A到双曲线C的渐近线距离为3.

(1)求椭圆E的方程;

(2)若直线y=x与椭圆E交于M、N两点(M点在第一象限),P、Q是椭圆上不同于M的相异两点,并且∠PMQ的平分线垂直于x轴.试求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的方程为x2-y2=4.椭圆E以双曲线C的顶点为焦点,且其右顶点A到双曲线C的渐近线距离为.

(1)求椭圆E的方程;

(2)若直线y=x与椭圆E交于M、N两点(M点在第一象限),P、Q是椭圆上不同于M的相异两点,点O为坐标原点,并且满足(+)·(-)=0.试求直线PQ的斜率.

查看答案和解析>>

同步练习册答案