(本小题满分14分)
平面直角坐标系中,已知直线
:
,定点
,动点
到直线
的距离是到定点
的距离的2倍.
(1)求动点
的轨迹
的方程;
(2)若
为轨迹
上的点,以
为圆心,
长为半径作圆
,若过点
可作圆
的两条切线
,
(
,
为切点),求四边形
面积的最大值.
(本小题满分14分)
解(1)设点
到
的距离为
,依题意得
,
即
, ………………………………2分
整理得,轨迹
的方程为
. ………………………………4分
(2)(法一)设
,圆
:
,其中![]()
由两切线存在可知,点
在圆
外,
所以,
,即
,
又
为轨迹
上的点,所以
.
而
,所以,
,即
. ……………………6分
由(1)知,为椭圆的左焦点,
根据椭圆定义知,
,
所以
,而
,
所以,在直角三角形
中,
,
,
由圆的性质知,四边形
面积
,其中
.………10分
即
(
).
令
(
),则
,
当
时,
,
单调递增;
当
时,
,
单调递减.
所以,在
时,
取极大值,也是最大值,
此时
. …………………………14分
(法二)同法一,四边形
面积
,其中
.…10分
所以
.
由
,解得
,所以
. ……………………14分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com