精英家教网 > 高中数学 > 题目详情
已知数列{an}满足 .
(I)求数列的前三项a1,a2,a3
(II)求证:数列 为等差数列;
(III)求数列{an}的前n项和Sn
解:(I)由 an=2an﹣1+2n﹣1(n∈N+,且n≥2)得 a4=2a3+24﹣1=81,得a3=33,
同理,可得 a2=13,a1=5.
(II)∵an=2an﹣1+2n﹣1,
∴  =  =1,
故数列 是以2为首项,以1为公差的等差数列.
(III)由(II)可得  =2+(n﹣1)×1,
∴an=(n+1)2n+1.
∴Sn=a1+a2+…+an=2×2+3×22+4×23+…+(n+1)×2n+n,
记Tn=2×2+3×22+4×23+…+(n+1)×2n
则有2Tn=2×22+3×23+…+n×2+(n+1)2n+1
两式相减,
可得﹣Tn=2×2+22+23+…+2n﹣(n+1)2n+1=4+ ﹣(n+1)2n+1=﹣n·2n+1
解得  Tn=n×2n+1,故 Sn=Tn+n=n×2n+1+n=n?(2n+1+1 ).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案