精英家教网 > 高中数学 > 题目详情
判断并证明函数y=
2x
x2+1
在定义域R上的奇偶性.
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:根据函数奇偶性的定义即可得到结论.
解答: 解:函数f(x)的定义域为R,
则f(-x)=
-2x
x2+1
=-
2x
x2+1
=-f(x),
则f(x)是奇函数.
点评:本题主要考查函数奇偶性的判断,根据奇偶性的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解下列方程或不等式:
(1)A2n+14=140An3      
(2)AN4≥24Cn6

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+bx+c为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.
(1)求a,b,c的值;
(2)求函数f(x)的单调递增区间,极大值和极小值,并求函数f(x)在[-1,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在面积为12的△PEF中,已知tan∠PEF=
1
2
,tan∠PFE=-2,试建立适当直角坐标系,求出分别以E、F为左右焦点且过点P的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

按下列程序框图运算:

当x=5是时,写出要进行几次循环以及每一次的计算结果.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=8,a4=2,且满足an+2=2an+1-an,(n∈N*
(1)求a2、a3,并求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),Tn=b1+b2+…+bn,(n∈N*),是否存在最大的;
正整数m,使得对任意n∈N*均有Tn
m
32
成立?若存在求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一物体的运动方程为s=t2-t+5,其中s的单位是米,t的单位是秒,那么物体在4秒末的瞬时速度是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若z=
1+2i
i
,则复数
.
z
等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={1,2,3,4,5},集合A={2,5},B={4,5}则∁U(A∪B)=
 

查看答案和解析>>

同步练习册答案