精英家教网 > 高中数学 > 题目详情
13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且a2+bc=b2+c2
(1)求∠A的大小;
(2)若b=2,a=$\sqrt{3}$,求边c的大小;
(3)若a=$\sqrt{3}$,求△ABC面积的最大值.

分析 (1)由已知及余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,即可解得A.
(2)由(1)及余弦定理即可得解.
(3)由余弦定理可得:3=b2+c2-2bccosA=b2+c2-bc,从而解得bc≤3,利用三角形面积公式即可得解.

解答 解:(1)∵a2+bc=b2+c2
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴A=$\frac{π}{3}$.
(2)∵由(1)可得:$\frac{1}{2}$=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4+{c}^{2}-3}{2×2×c}$,整理可得:c2-2c+1=0,
∴解得:c=1
(3)∵a=$\sqrt{3}$,A=$\frac{π}{3}$.
∴由余弦定理可得:3=b2+c2-2bccosA=b2+c2-bc,解得:bc≤3,
∴${S}_{△ABC}=\frac{1}{2}bcsinA$≤$\frac{1}{2}×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.

点评 本题主要考查了余弦定理,三角形面积公式,基本不等式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知$\underset{lim}{x→2}$$\frac{{x}^{2}+cx+2}{x-2}$=a,且函数y=alnx+$\frac{b}{x}$+c在(1,e)上具有单调性,则b的取值范围是(  )
A.(-∞,1]∪[e,+∞)B.(-∞,0)∪[e,+∞)C.(-∞,e]D.[1,e]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果函数f(x)=|lg|2x-1||在定义域的某个子区间(k-1,k+1)上不存在反函数,则k的取值范围是$(-1,-\frac{1}{2}]∪[\frac{3}{2},2)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a=2,b=3,sinA=$\frac{1}{2}$,则cosB的值是(  )
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.±$\frac{{\sqrt{7}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若$\frac{cosA}{cosB}=\frac{b}{a}$,则△ABC的形状等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$y=Asin(ωx+φ)+K,(A>0,ω>0,|φ|<\frac{π}{2})$的值域为[1,5],其图象过点$(0,3-\sqrt{2})$,两条相邻对称轴之间的距离为$\frac{π}{3}$,则此函数解析式为$y=2sin(3x-\frac{π}{4})+3$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a>0,b>0,且a+b=1,则y=$\frac{1}{a}+\frac{4}{b}$的最小值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}$$|=4,\overrightarrow a与\overrightarrow b$的夹角为$\frac{π}{3}$,以$\overrightarrow a,\overrightarrow b$为邻边作平行四边形,则此平行四边形的两条对角线中较长的一条的长度为$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知锐角△ABC中,tanB=2,tanC=3,则角A=$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案