精英家教网 > 高中数学 > 题目详情
3.已知$\underset{lim}{x→2}$$\frac{{x}^{2}+cx+2}{x-2}$=a,且函数y=alnx+$\frac{b}{x}$+c在(1,e)上具有单调性,则b的取值范围是(  )
A.(-∞,1]∪[e,+∞)B.(-∞,0)∪[e,+∞)C.(-∞,e]D.[1,e]

分析 先由$\underset{lim}{x→2}$$\frac{{x}^{2}+cx+2}{x-2}$=a,求得a=1,c=-3,从而得到y=alnx+$\frac{b}{x}$+c=lnx+$\frac{b}{x}$-3,再由“函数y=alnx++c在(1,e)上具有单调性”转化为“y′=$\frac{1}{x}$-$\frac{b}{{x}^{2}}$≥0或y′=$\frac{1}{x}$-$\frac{b}{{x}^{2}}$≤0在(1,e)上恒成立”,再令t=$\frac{1}{x}$∈($\frac{1}{e}$,1)转化为-bt2+t≥0或-bt2+t≤0在($\frac{1}{e}$,1)上恒成立,由二次函数的性质求解.

解答 解:∵$\underset{lim}{x→2}$$\frac{{x}^{2}+cx+2}{x-2}$=a,
∴a=1,c=-3,
∴y=alnx+$\frac{b}{x}$+c=lnx+$\frac{b}{x}$-3
∵函数y=alnx+$\frac{b}{x}$+c在(1,e)上具有单调性
∴y′=$\frac{1}{x}$-$\frac{b}{{x}^{2}}$≥0或y′=$\frac{1}{x}$-$\frac{b}{{x}^{2}}$≤0在(1,e)上恒成立
∴令t=$\frac{1}{x}$∈($\frac{1}{e}$,1)
∴-bt2+t≥0或-bt2+t≤0
∴b≤1或b≥e
故选:A.

点评 本题主要考查导数法研究函数的单调性,基本思路:当函数是增函数时,导数大于等于零恒成立,当函数是减函数时,导数小于等于零恒成立,然后转化为求相应函数的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.计算:cos[arccos$\frac{4}{5}$-arccos(-$\frac{3}{15}$)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=tanx+cos(x+m)为奇函数,则m=$\frac{π}{2}+kπ({k∈Z})$,;若m满足不等式$\frac{{m}^{2}-9}{m(m-1)}$≤0,则实数m的值为$±\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,sin2A+cos2B=1,则cosA+cosB+cosC的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设正数数列{an}的前n项和为Sn满足Sn=$\frac{1}{4}$(an+1)2(n∈N*).
(1)求出数列{an}的通项公式.
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,记数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)=$\left\{\begin{array}{l}2x{\;}_{\;}{\;}_{\;}{\;}_{\;}x≤4\\ 8{\;}_{\;}{\;}_{\;}{\;}_{\;}{\;}_{\;}4<x≤8\\ 2x(12-x){\;}_{\;}8<x\end{array}$
(1)解不等式f(x)<0
(2)写出求函数的函数值的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.运行如图所示的程序框图.若输入x=4,则输出y的值为(  )
A.49B.25C.13D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-ax+a(a∈R)同时满足:①不等式f(x)≤0 的解集有且只有一个元素;②在定义域内存在0<x1<x1,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和为Sn=f(n).
(1)求数列{an}的通项公式及$\sum_{i=1}^{n+2}$$\frac{1}{{a}_{i}{a}_{i+1}}$的值;
(2)设各项均不为零的数列{cn}中,所有满足cici+1的正整数i的个数称为这个数列{cn}的变号数,令 cn=1-$\frac{a}{{a}_{n}}$,n为正整数,求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且a2+bc=b2+c2
(1)求∠A的大小;
(2)若b=2,a=$\sqrt{3}$,求边c的大小;
(3)若a=$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案