精英家教网 > 高中数学 > 题目详情
11.在△ABC中,sin2A+cos2B=1,则cosA+cosB+cosC的最大值为$\frac{3}{2}$.

分析 利用同角三角函数间的基本关系和已知得到B=A,根据三角形的内角和定理得到C=π-A-B=π-2A,把B和C代入到所求的式子中,利用诱导公式及二倍角的余弦公式化简可得关于cosA的二次函数,根据cosA的取值范围,利用二次函数求最值的方法得到原式的最大值.

解答 解:由sin2A+cos2B=1,得sin2A=sin2B,
∴A=B,又A+B+C=π,得C=π-A-B=π-2A,
则cosA+cosB+cosC=2cosA-cos2A=-2cos2A+2cosA+1.
又0<A<$\frac{π}{2}$,0<cosA<1.
∴cosA=$\frac{1}{2}$时,有最大值$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 此题是关于三角函数的化简和二次函数求最值的综合问题,要求学生灵活运用三角函数的恒等变换化简求值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.参数方程为$\left\{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=2}\end{array}\right.$(t为参数)表示的曲线是(  )
A.两条射线B.两条直线C.一条射线D.一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设Tn是数列{an}的前n项之积,满足Tn=1-an(n∈N*).
(1)求证:数列{$\frac{1}{1-{a}_{n}}$}是等差数列并求{an}的通项公式;
(2)设Sn=T${\;}_{{1}^{\;}}$2+T22+…+Tn2,求证:an+1-$\frac{1}{2}$<Sn<an+1-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax,则“0<a≤$\frac{1}{4}$”是“对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中,角A,B,C的对边长分别为a,b,c,a=4,A=30°,b=x(x>0),当x为何值时,三角形有两解?一解?无解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin(2x-$\frac{π}{6}$)-1,设△ABC的内角A、B、C的对边长分别为a、b、c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\underset{lim}{x→2}$$\frac{{x}^{2}+cx+2}{x-2}$=a,且函数y=alnx+$\frac{b}{x}$+c在(1,e)上具有单调性,则b的取值范围是(  )
A.(-∞,1]∪[e,+∞)B.(-∞,0)∪[e,+∞)C.(-∞,e]D.[1,e]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知0<b<a<c≤4,ab=2,则$\frac{{{a^2}+{b^2}}}{a-b}+\frac{1}{c}$的最小值是$\frac{17}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a=2,b=3,sinA=$\frac{1}{2}$,则cosB的值是(  )
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.±$\frac{{\sqrt{7}}}{4}$

查看答案和解析>>

同步练习册答案