精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=$\left\{\begin{array}{l}2x{\;}_{\;}{\;}_{\;}{\;}_{\;}x≤4\\ 8{\;}_{\;}{\;}_{\;}{\;}_{\;}{\;}_{\;}4<x≤8\\ 2x(12-x){\;}_{\;}8<x\end{array}$
(1)解不等式f(x)<0
(2)写出求函数的函数值的程序.

分析 (1)把要解的不等式转化为与之等价的2个不等式组,求得每个不等式组的解集,再取并集,即得所求.
(2)利用条件语句写出根据函数的解析式求函数的值的程序.

解答 解:(1)∵函数f(x)=$\left\{\begin{array}{l}2x{\;}_{\;}{\;}_{\;}{\;}_{\;}x≤4\\ 8{\;}_{\;}{\;}_{\;}{\;}_{\;}{\;}_{\;}4<x≤8\\ 2x(12-x){\;}_{\;}8<x\end{array}$,故由f(x)<0可得$\left\{\begin{array}{l}{x≤4}\\{2x<0}\end{array}\right.$①,或 $\left\{\begin{array}{l}{x>8}\\{2x(12-x)<0}\end{array}\right.$②.
解①求得x<0,解②求得x>12,
故不等式f(x)<0的解集为{x|x<0,或x>12}.
(2)求函数的函数值的程序如下:
INPUT x
IF x≤4 THEN
y=2x
ELSE
IF 4<x≤8 THEN
y=8
ELSE
IF x>8 THEN
y=2x(12-x)
END IF
END IF
PRINT y
END

点评 本题主要考查分段函数的应用,体现了转化、分类讨论的数学思想,根据函数的解析式求函数的值的程序写法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数y=f(x)的导函数f′(x)的图象如图所示,给出下列命题:
①-3是函数y=f(x)的极值点;
②-1是函数y=f(x)的最小值点;
③y=f(x)在区间(-3,1)上单调递增;
④y=f(x)在x=0处切线的斜率小于零.
以上正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax,则“0<a≤$\frac{1}{4}$”是“对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin(2x-$\frac{π}{6}$)-1,设△ABC的内角A、B、C的对边长分别为a、b、c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\underset{lim}{x→2}$$\frac{{x}^{2}+cx+2}{x-2}$=a,且函数y=alnx+$\frac{b}{x}$+c在(1,e)上具有单调性,则b的取值范围是(  )
A.(-∞,1]∪[e,+∞)B.(-∞,0)∪[e,+∞)C.(-∞,e]D.[1,e]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知0<b<a<c≤4,ab=2,则$\frac{{{a^2}+{b^2}}}{a-b}+\frac{1}{c}$的最小值是$\frac{17}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若$\overrightarrow{a}$=(x,1)与$\overrightarrow{b}$=(4,x)共线,则实数x的值为2或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$y=Asin(ωx+φ)+K,(A>0,ω>0,|φ|<\frac{π}{2})$的值域为[1,5],其图象过点$(0,3-\sqrt{2})$,两条相邻对称轴之间的距离为$\frac{π}{3}$,则此函数解析式为$y=2sin(3x-\frac{π}{4})+3$.

查看答案和解析>>

同步练习册答案