精英家教网 > 高中数学 > 题目详情
(2013•绵阳一模)已知定义在R上的函数f(x)满足f(1)=1,f(1-x)=1-f(x),2f(x)=f(4x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f(
1
33
)等于(  )
分析:先求出f(
1
2
),然后根据条件求出f(
1
4
)
f(
1
8
),f(
1
16
),f(
1
32
)
,最后根据函数的单调性,以及两边夹的性质可求出所求.
解答:解:∵f(1)=1,f(1-x)=1-f(x)
令x=
1
2
得f(
1
2
)+f(
1
2
)=1即f(
1
2
)=
1
2

∵2f(x)=f(4x)
∴f(x)=
1
2
f(4x)
在f(x)=
1
2
f(4x)中,令x=
1
4
可得f(
1
4
)=
1
2
f(1)
=
1
2

在f(1-x)+f(x)=1中,令x=
1
4
可得f(
1
4
)+f(
3
4
)=1即f(
3
4
)=
1
2

同理可求f(
1
8
)=
1
2
f(
1
2
)=
1
4
,f(
7
8
)=1-f(
1
8
)=
3
4

f(
1
16
)=
1
2
f(
1
4
)
=
1
4
,f(
15
16
)=1-f(
1
16
)=
3
4

f(
1
32
)=
1
2
f(
1
8
)
=
1
8
,f(
31
32
)=1-f(
1
32
)=
7
8

f(
1
64
)
=
1
2
f(
1
16
)
=
1
8
,f(
63
64
)=1-
1
8
=
7
8

∵当0≤x1≤x2≤1时,f(x1)≤f(x2),
1
8
=f(
1
64
)≤f(
1
33
)≤
f(
1
32
)=
1
8

∴f(
1
33
)
=
1
8

故选B
点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绵阳一模)函数f(x)=ex-x-2的零点所在的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳一模)已知数列{an}是等比数列且a3=
14
,a6=2.
(I)求数列{an}的通项公式;
(II)若数列{an}满足bn=3log2an,且数列{bn}的前“项和为Tn,问当n为何值时,Tn取最小值,并求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳一模)在△ABC中,角A,B,C的对边分别是a,b,c若asinA=(a-b)sinB+csinC.
(I )求角C的值;
(II)若△ABC的面积为
3
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳一模)已知函数f(x)=lnx-ax+1在x=2处的切线斜率为-
1
2

(I)求实数a的值及函数f(x)的单调区间;
(II)设g(x)=kx+1,对?x∈(0,+∞),f(x)≤g(x)恒成立,求实数k的取值范围;
(III)设bn=
ln(n+1)
n3
,证明:b1+b2+…+bn<1+ln2(n∈N*,n≥2).

查看答案和解析>>

同步练习册答案