精英家教网 > 高中数学 > 题目详情
14.已知α∈($\frac{π}{2}$,π),且tan(α+$\frac{π}{4}$)=-$\frac{1}{7}$,则sin(2α-π)=$\frac{7}{25}$.

分析 利用二倍角公式及诱导公式求得tan2(α+$\frac{π}{4}$)=tan(2α+π)=tan2α,sin(2α-π)=-sin2α,根据α的取值范围,及tan2α<0,求得2α的取值范围,根据同角三角关系即可求得sin2α的值,由诱导公式sin(2α-π)=-sin2α,即可求得sin(2α-π)的值.

解答 解:tan2(α+$\frac{π}{4}$)=$\frac{2tan(α+\frac{π}{4})}{1-ta{n}^{2}(α+\frac{π}{4})}$=$\frac{2×(-\frac{1}{7})}{1-(\frac{1}{7})^{2}}$=-$\frac{7}{24}$,
∴tan(2α+π)=tan2α,
∴tan2α=-$\frac{7}{24}$,
α∈($\frac{π}{2}$,π),2α∈(π,2π),
∵tan2α<0,
∴2α∈($\frac{3π}{2}$,2π),
由$\left\{\begin{array}{l}{tan2α=\frac{sin2α}{cos2α}}\\{si{n}^{2}2α+co{s}^{2}2α=1}\end{array}\right.$,解得:sin2α=-$\frac{7}{25}$,
sin(2α-π)=-sin2α=$\frac{7}{25}$,
故答案为:$\frac{7}{25}$.

点评 本题考查三角恒等变形,考查二倍角公式、诱导公式及同角的三角关系,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,A,B,C为圆O上三点,点B平分弧$\widehat{AC}$,点P为AC延长线上一点,PQ是圆O的切线,切点为Q,BQ与AC相交于点D.
(1)求证:PD=PQ;
(2)若PC=1,AD=PD,求BD•QD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-|x2-ax-2|,a为实数.
(Ⅰ)当a=1时,求函数f(x)在[0,3]上的最小值和最大值;
(Ⅱ)若函数f(x)在(-∞,-1)和(2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)和向量$\overrightarrow{b}$=(1,f(x)),且$\overrightarrow{a}$∥$\overrightarrow{b}$.
(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A、B、C,若有f(A-$\frac{π}{3}$)=$\sqrt{3}$,sinB=$\frac{\sqrt{21}}{7}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$$\sqrt{3}$的最小正周期与最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,平面PDC⊥平面ABCD,AC=AD=PD=PC,∠DAC=90°,M在PB上.
(Ⅰ)若点M是PB的中点,求证:PA⊥平面CDM;
(Ⅱ)在线段PB上确定点M的位置,使得二面角D-MC-B的余弦值为-$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\underset{lim}{x→0}$$\frac{sinx}{x}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{a^x},x<0\\(a-3)x+4a,x≥0\end{array}$满足对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_2}-{x_1}}}$>0成立,则实数a的取值范围是$(0,\frac{1}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从一条生产线上每隔30min取一件产品,共取了n件,测得它们的长度(单位:cm)后,画出其频率分布直方图如图所示,若长度在[20,25)cm内的频数为40,则长度在[10,15)cm内的产品共有16件.

查看答案和解析>>

同步练习册答案